DOI QR코드

DOI QR Code

A Study on the Deformation Characteristics of the Roof Signboard Size in Wind Pressure Formation

풍압 형성에 따른 옥상광고판 크기별 특성에 관한 연구

  • Received : 2018.11.09
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

This study numerically examined the maximum wind pressure distribution of a billboard on the roof of a middle-rise building. The deformation caused by the maximum wind pressure was examined. For the numerical analysis, the signboard was assumed to be installed on $(b)20m{\times}(d)10m{\times}(h)$ buildings. The maximum wind pressure was measured using four models with the standard model and different sizes of the signboard. The numerical analysis showed that the horizontal deformation predominantly occurs as the shape of the signboard becomes closer to a rectangle, and high wind pressure and deformation occur at the corners of both ends. As the height of the signboard increases, vertical deformation predominantly occurs, and static pressure forms on the backside. When the height is lower than the width of the signboard, the wind pressure is concentrated on the center of the roof. Therefore, the distribution of the maximum wind pressure is stable, and the effect of the wind pressure is relatively low as the height-to-width ratio approaches 1.

본 연구는 건축물 옥상에 설치되는 옥외광고탑의 강풍피해 경감을 위하여, 중저층의 건축물 옥상에 설치되는 광고판에 작용하는 최대풍압력 분포에 따른 광고판의 변형을 CFD 수치해석을 통하여 고찰한 연구이다. 수치해석을 위하여 $(b)20m{\times}(d)10m{\times}(h)30m$의 건물에 광고판이 설치되는 것을 가정하여 기본모델과 광고판의 크기를 변경한 3개의 모델을 사용하여 최대 풍압 형성에 대한 변형을 고찰하였다. 수치해석 결과, 광고판의 모양이 장방형에 가까울수록 수평적인 변형이 지배적으로 발생하며 양단부의 모서리 부분에서 높은 풍압력과 변형이 발생한다. 그리고 광고판의 높이가 클수록 수직적인 변형이 지배적으로 발생하고, 배면에 정압이 형성되는 특징이 있다. 광고판의 폭보다 높이가 낮아지는 경우, 최대 풍압은 중앙부 상부 집중적으로 발생한다. 따라서, 높이와 너비의 비가 1에 가까울수록 최대 풍압의 분포가 안정적이고 풍압에 의한 영향이 비교적 낮다는 결과를 확인할 수 있었다. 이 결과를 토대로 바람의 영향을 막는 구조적인 보강과 높이와 너비의 비가 1에 가까운 여러 개의 광고판으로 전체 광고판을 구성하는 등의 풍압력 발생에 대해 유연한 대응이 필요하다.

Keywords

SHGSCZ_2019_v20n1_401_f0001.png 이미지

Fig. 1. Analysis and Interpretation Flow

SHGSCZ_2019_v20n1_401_f0002.png 이미지

Fig. 2. Dimension of Building Model and Stand ardSignboard

SHGSCZ_2019_v20n1_401_f0003.png 이미지

Fig. 3. Dimension of Building Model and Standard Signboard σU1/σx3 : Distribution of Main Shear Layer, σU1/σx1 : Distribution of Generations Corner, σU3/σx3 : Distribution of Generations Corner, Ui : Wind Velocity, x1 : Spatial Coordinate 3 Ingredients, i = 1 : Main Flow Direction, i = 2 : Main Flow Right Angle, i = 3 : Vertical Profile Direction,

SHGSCZ_2019_v20n1_401_f0004.png 이미지

Fig. 4. Horizontal Distribution of Peak Wind Force Coefficients

Table 1. Type of Modify Signboard Model

SHGSCZ_2019_v20n1_401_t0001.png 이미지

Table 2. Setting Numerical Analysis Surrounding Condition

SHGSCZ_2019_v20n1_401_t0002.png 이미지

Table 3. Compare of k-ε Model and RNG k-ε Model Equation

SHGSCZ_2019_v20n1_401_t0003.png 이미지

Table 4. Maximum value of wind direction coefficient of maximum wind direction in Standard Signboard

SHGSCZ_2019_v20n1_401_t0004.png 이미지

Table 5. Distribution of the maximum wind pressure coefficient of each part in Model-A

SHGSCZ_2019_v20n1_401_t0005.png 이미지

Table 6. Distribution of the maximum wind pressure coefficient of each part in Model-B

SHGSCZ_2019_v20n1_401_t0006.png 이미지

Table 9. Distribution of the maximum wind pressure coefficient of each part in Model

SHGSCZ_2019_v20n1_401_t0007.png 이미지

Table 7. Distribution of the maximum wind pressure coefficient of each part in Model-C

SHGSCZ_2019_v20n1_401_t0008.png 이미지

Table 8. Distribution of the maximum wind pressure coefficient of each part in Model-D

SHGSCZ_2019_v20n1_401_t0009.png 이미지

References

  1. Ha, young Cheol, "Revised Wind Loads in KBC2016", Review of Architecture and Buliding Science, 2016.
  2. Y. B. Chung, Y. C. Ha, A, "Study for Application and Numberical Prediction of Wind Pressure Distribution Over Buliding Cladding Using Computational Fluent Dynamics", The Wind Engineering Institute of Korea, vol 12, 2, 2008.
  3. H. J. Ham, S. Y. Lee, "Characteristics of Dynamic Buliding Pressure on a Low-rise Building : Comparison of full and Model Scale Tests", Journal of the Architecture Institute of Korea Structure & Construction, 19(6), 27-35, 2003.
  4. W. R. Cho, B. J. Kim, Y. C. Ha, "Analysis on the Correlation on Wind Pressure for Building", Proceeding of WEIIK Symposium, The Engineering Institute of Korea, 133-138, 2015.
  5. H. R. Kim, S. H. Suh, K. Y. Lee, S. K. Cho, K. S. Kim, "Assessment of wind Pressures on the Building wuth Odd-Geometry Using Numerical Simulation", Journal of the Architecture Institute of Korea Structure & Construction, 16(1), 325-327, 1996.
  6. S. H. Jung, "Sumulation of Fluctuating Wind Pressures on Bluff Bodies", The Wind Engineering Institue of Korea, Proceeding of WEIIK Symposium, 81-86, 2004.
  7. Y. C. Ha, S. J. Lee, " A Study on the Estimation of Basic Wind Speed for Design of Temporary Structures", Journal of the Architecture Institute, 12(11), 159-170, 1996.
  8. H. J. Choi, S. K. Cho, H. R. Kim, K. R. Lee, K. S. Kim, "Comparison of wind pressures for Cladding design with several countries ; with emphasis on external Roof Surface", The Wind Engineering Institue of Korea, Proceeding of WEIIK Symposium, 36-41, 2000.
  9. Y. B. Chung, Y. C. Ha, "A Study for Application and Numerical Prediction of Wind Pressure Distribution over Buliding Cladding Using Computational Fluent Dynamics", Journal of the Wind Engineering Institute of Korea, 12(2), 113-119, 2008.
  10. Y. B. Chung, "A Basic Study Wind Load for a Cable Using Two-Dimension Computational Fluent Dynamics", Journal of the Wind Engineering Institute of Korea, 13(2), 83-89. 2009.
  11. S. H. Jeong, "POD study Wind Pressure Measured at Non-uniformly Spaced Taps on a structure", Journal of the Wind Engineering Institute of Korea, 4(2), 182-190, 2000..
  12. K. Takamori, "A Study on Wind Power Characteristics and Wind Performance Evaluation of Buliding Exterior Meterials and Attachment", Osaka University, 2015.
  13. R. Okada, A. Yoshida, S. Nakata, M. Matsui, Y. Tamura, "Evaluation Method of Wind Pressure Resistant Characteristics for Ceiling Panel System", J. of Wind Engineering, JAWE, Vol. 40, No.3(No.144), 2015. DOI: https://doi.org/10.5359/jwe.40.63
  14. K, Ohtake, O. Kakamura, Y. Okuda, "Peak Wind Force Coefficients for Balcony Handrail", J. of Wind Engineering, JAWE, Vol.36, No.4(No.129), 2011. DOI: https://doi.org/10.5359/jawe.36.376
  15. H. Terazaki, A. Katsumura, Y. Uematsu, K. Ohatake, Y. Okuda, H. Kikuchi, H. Noda, Y. Masuyama, M. Yamamoto, A. Yoshida, "Wind Force Coeffcient and Gust Loading Factor for Roof and Eave", J. of Wind Engineering, JAWE, Vol.36, No.4(No. 129), 2011.
  16. JAAA, "The CREATER. 2007", Japan Advertising Agencies Association, 2007.
  17. Tsutomu Kambe, "Flow Dictionary", Maruzen Press, 397-403, 2004.
  18. H. K. Versteeg, W. Malalasekera, "An Introduction to Computational Fluid Dynamics", Pearson press, 2007
  19. M. Tabatabaian, "CFD MODULE : Turbulent Flow Modeling", Mercury Learning and Information, 2015.
  20. Mochida Akashi, "Recent Progress in CFD and Application to Enviromental Problems", Japan Association for Wind Engineering, Vol 60, 24-37, 1994. DOI: https://doi.org/10.5359/jawe.1994.60_24
  21. W. K. Che, "Assessment Method of the Advertsing Pillar Tower on the Penthouse", Korea Institute of Intelligent System Proceeding of Symposium, 221-226, 1998.
  22. H, R. Kim, K. Y. Lee, K. S. Kim, "A Study of Two Dimmsional Wind Flow and Surface Pressure around a Aquare-Shape Bluff body", Architecture Institute of Korea, Structure & Construction, 14(1), 349-352, 1994.