DOI QR코드

DOI QR Code

Protective Effects of Plathymenia reticulata and Connarus favosus Aqueous Extracts against Cadmium- and Mercury-Induced Toxicities

  • Received : 2018.05.16
  • Accepted : 2018.07.20
  • Published : 2019.01.15

Abstract

The extracts of Plathymenia reticulata and Connarus favosus are widely used in the folk medicine. The potential protective effects of these extracts have been evaluated against cadmium in the yeast Saccharomyces cerevisiae, and against mercurial contamination in zebrafish Danio rerio. In yeast, both extracts efficiently protected the ${\Delta}ycf1$ mutant strain exposed to cadmium chloride restoring the growth, the expression of stress-response genes and decreasing the level of oxidative stress. In zebrafish, the supplementation of methylmercury-contaminated diet with both plant extracts similarly protected fish through the suppression of the methylmercury-induced lipid peroxidation, decrease of acetylcholinesterase activity, and restoring the expression levels of stress-response genes. This study particularly demonstrates the protective potential of both aqueous extracts against methylmercury, and could represent an interesting alternative for the Amazonian fish-eating communities to cope with the impact of chronic exposure to contaminated diets.

Keywords

References

  1. Bieski, I.G., Leonti, M., Arnason, J.T., Ferrier, J., Rapinski, M., Violante, I.M., Balogun, S.O., Pereira, J.F., Figueiredo Rde C., Lopes, C.R., da Silva, D.R., Pacini, A., Albuquerque, U.P. and Martins, D.T. (2015) Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J. Ethnopharmacol., 173, 383-423. https://doi.org/10.1016/j.jep.2015.07.025
  2. Breitbach, U.B., Niehues, M., Lopes, N.P., Faria, J.E.Q. and Brandão, M.G.L. (2013) Amazonian Brazilian medicinal plants described by C.F.P. von Martius in the 19th century. J. Ethnopharmacol., 147, 180-189. https://doi.org/10.1016/j.jep.2013.02.030
  3. De Medeiros, P.M., Ladio, A.H. and Albuquerque, U.P. (2013) Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: a macroscale investigation based on available literature. J. Ethnopharmacol., 150, 729-746. https://doi.org/10.1016/j.jep.2013.09.026
  4. Pedrollo, C.T., Kinupp, V.F., Shepard, G., Jr. and Heinrich, M. (2016) Medicinal plants at Rio Jauaperi, Brazilian Amazon: ethnobotanical survey and environmental conservation. J. Ethnopharmacol., 186, 111-124. https://doi.org/10.1016/j.jep.2016.03.055
  5. Moura, V.M., da Silva, W.C., Raposo, J.D., Freitas-de-Sousa, L.A., Dos-Santos, M.C., de Oliveira, R.B. and Veras Mourao, R.H. (2016) The inhibitory potential of the condensed-tannin-rich fraction of Plathymenia reticulata Benth. (Fabaceae) against Bothrops atrox envenomation. J. Ethnopharmacol., 183, 136-142. https://doi.org/10.1016/j.jep.2016.02.047
  6. Pereira da Silva, T., Moura, V.M., Souza, M.C., Santos, V.N., Silva, K.A., Mendes, M.G., Nunez, C.V., Almeida, P.D., Lima, E.S., Mourao, R.H. and Dos-Santos, M.C. (2016) Connarus favosus Planch.: an inhibitor of the hemorrhagic activity of Bothrops atrox venom and a potential antioxidant and antibacterial agent. J. Ethnopharmacol., 183, 166-175. https://doi.org/10.1016/j.jep.2016.02.043
  7. Moura, V.M., Freitas-de-Sousa, L.A., Dos-Santos, M.C., Raposo, J.D., Lima, A.E., de Oliveira, R.B., da Silva, M.N. and Veras Mourao, R.H. (2015) Plants used to treat snakebites in Santarem, western Para, Brazil: an assessment of their effectiveness in inhibiting hemorrhagic activity induced by Bothrops jararaca venom. J. Ethnopharmacol., 161, 224-232. https://doi.org/10.1016/j.jep.2014.12.020
  8. Cavalcanti, D.R. and Albuquerque, U.P. (2013) The "hidden diversity" of medicinal plants in northeastern Brazil: diagnosis and prospects for conservation and biological prospecting. Evid. Based. Complement. Alternat. Med., 2013, 102714.
  9. Nascimento, J.M. and Conceicao, G.M. (2011) Plantas medicinais e indicacoes terapeuticas da comunidade Quilombola Olho D'agua do Raposo, Caxias, Maranhao, Brasil. Rev. Biol. Farmacia., 6, 138-151.
  10. Berzas Nevado, J.J., Rodriguez Martin-Doimeadios, R.C., Guzman Bernardo, F.J., Jimenez Moreno, M., Herculano, A.M., do Nascimento, J.L. and Crespo-Lopez, M.E. (2010) Mercury in the Tapajos river basin, Brazilian amazon: a review. Environ. Int., 36, 593-608. https://doi.org/10.1016/j.envint.2010.03.011
  11. Passos, C.J.S., Mergler, D., Fillion, M., Lemire, M., Mertens, F., Guimaraes, J.R.D. and Philibert, A. (2007) Epidemiologic confirmation that fruit consumption influences mercury exposure in the Brazilian Amazon. Environ. Res., 105, 183-193. https://doi.org/10.1016/j.envres.2007.01.012
  12. Passos, C.J.S. and Mergler, D. (2008) Human mercury exposure and adverse health effects in the Amazon: a review. Cad. Saude Publica, 24, S503-S520. https://doi.org/10.1590/S0102-311X2008001600004
  13. Adedara, I.A., Rosemberg, D.B., Souza, D.O., Farombi, E.O., Aschner, M. and Rocha, J.B. (2016) Neuroprotection of luteolin against methylmercury-induced toxicity in lobster cockroach Nauphoeta cinerea. Environ. Toxicol. Pharmacol., 42, 243-251. https://doi.org/10.1016/j.etap.2016.02.001
  14. Ayyathan, D.M., Chandrasekaran, R. and Thiagarajan, K. (2012) Neuroprotective effect of Tagara, an Ayurvedic drug against methyl mercury induced oxidative stress using rat brain mitochondrial fractions. BMC Complement Altern Med., 15, 268.
  15. Farina, M., Rocha, J.B. and Aschner, M. (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci., 89, 555-563. https://doi.org/10.1016/j.lfs.2011.05.019
  16. Kim, W., Kim, D.W., Yoo, D.Y., Jung, H.Y., Kim, J.W., Kim, D.W., Choi, J.H., Moon, S.M., Yoon, Y.S. and Hwang, I.K. (2015) Antioxidant effects of Dendropanax morbifera Leveille extract in the hippocampus of mercury-exposed rats. BMC Complement Altern Med., 15, 247. https://doi.org/10.1186/s12906-015-0786-1
  17. Rice, K.M., Walker, E.M. Jr., Wu, M., Gillette, C. and Blough, E.R. (2014) Environmental mercury and its toxic effects. J. Prev. Med. Public. Health, 47, 74-83. https://doi.org/10.3961/jpmph.2014.47.2.74
  18. Sharma, M.K., Kumar, M. and Kumar, A. (2005) Protection against mercury-induced renal damage in Swiss albino mice by Ocimum sanctum. Environ. Toxicol. Pharmacol., 19, 161-167. https://doi.org/10.1016/j.etap.2004.06.002
  19. Li, Z.S., Lu, Y.P., Zhen, R.G., Szczypka, M., Thiele, D.J. and Rea, P.A. (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc. Natl. Acad. Sci. U.S.A., 94, 42-47. https://doi.org/10.1073/pnas.94.1.42
  20. Endo-Ichikawa, Y., Kohno, H., Tokunaga, R. and Taketani, S. (1995) Induction in the gene RNR3 in Saccharomyces cerevisiae upon exposure to different agents related to carcinogenesis. Biochem. Pharmacol., 50, 1695-1699. https://doi.org/10.1016/0006-2952(95)02071-3
  21. Vido, K., Spector, D., Lagniel, G., Lopez, S., Toledano, M.B. and Labarre, J. (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem., 276, 8469-8474. https://doi.org/10.1074/jbc.M008708200
  22. Gonzalez, P., Dominique, Y., Massabuau, J.C., Boudou, A. and Bourdineaud, J.P. (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ. Sci. Technol., 39, 3972-3980. https://doi.org/10.1021/es0483490
  23. Cambier, S., Benard, G., Mesmer-Dudons, N., Gonzalez, P., Rossignol, R., Brethes, D. and Bourdineaud, J.P. (2009) At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol., 41,791-799. https://doi.org/10.1016/j.biocel.2008.08.008
  24. De Oliveira Ribeiro, C.A., Nathalie, M.D., Gonzalez, P., Yannick, D., Bourdineaud, J.P., Boudou, A. and Massabuau, J.C. (2008) Effects of dietary methylmercury on zebrafish skeletal muscle fibres. Environ. Toxicol. Pharmacol., 25, 304-309. https://doi.org/10.1016/j.etap.2007.10.033
  25. Cambier, S., Gonzalez, P., Mesmer-Dudons, N., Brethes, D., Fujimura, M. and Bourdineaud, J.P. (2012) Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. Biometals, 25, 165-180. https://doi.org/10.1007/s10534-011-9494-6
  26. Oakes, K.D., McMaster, M.E. and Van Der Kraak, G.J. (2003) Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat. Toxicol., 63, 447-463. https://doi.org/10.1016/S0166-445X(02)00204-7
  27. Ellman, G.L., Courtney, K., Andres, V.J.R. and Feather- Stone, R.M. (1961) A new and rapid colorimetric determination of AChE activity. Biochem. Pharmacol., 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  28. Wemmie, J.A., Szczypka, M.S., Thiele, D.J. and Moye-Rowley, W.S. (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J. Biol. Chem., 269, 32592-32597. https://doi.org/10.1016/S0021-9258(18)31675-2
  29. Szczypka, M.S., Wemmie, J.A., Moye-Rowley, W.S. and Thiele, D.J. (1994) A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J. Biol. Chem., 269, 22853-22857. https://doi.org/10.1016/S0021-9258(17)31723-4
  30. Farina, M., Franco, J.L., Ribas, C.M., Meotti, F.C., Missau, F.C., Pizzolatti, M.G., Dafre, A.L. and Santos, A.R. (2005) Protective effects of Polygala paniculata extract against methylmercury-induced neurotoxicity in mice. J. Pharm. Pharmacol., 57, 1503-1508. https://doi.org/10.1211/jpp.57.11.0017
  31. Tunali-Akbay, T., Sener, G., Salvarli, H., Sehirli, O. and Yarat, A. (2007) Protective effects of Ginkgo biloba extract against mercury(II)-induced cardiovascular oxidative damage in rats. Phytother. Res., 21, 26-31. https://doi.org/10.1002/ptr.2007
  32. Kang, M.H. and Kim, B.H. (2018) Oral wound healing effects of acai berry water extracts in rat oral mucosa. Toxicol. Res., 34, 97-102. https://doi.org/10.5487/TR.2018.34.2.097
  33. Figueroa, L.A., Navarro, L.B., Vera, M.P. and Petricevich, V.L. (2014) Antioxidant activity, total phenolic and flavonoid contents, and cytotoxicity evaluation of Bougainvillea xbuttiana. Int. J. Pharm. Pharm. Sci., 6, 497-502.
  34. Karagoz, A., Artun, F.T., Ozcan, G., Melikoglu, G., Anil, S., Kultur, S. and Sutlupinar, N. (2015) In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol. Biotechnol. Equip., 29, 1184-1189. https://doi.org/10.1080/13102818.2015.1080600
  35. Shahidi, F. and Ambigaipalan, P. (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - a review. J. Funct. Foods, 18, 820-897. https://doi.org/10.1016/j.jff.2015.06.018
  36. Oboh, G., Akinyemi, A.J. and Ademiluyi, A.O. (2013) Inhibitory effect of phenolic extract from garlic on angiotensin- 1 converting enzyme and cisplatin induced lipid peroxidation - In Vitro. Int. J. Biomed. Sci., 9, 98-106.
  37. Adithya, E.S., Lakshmi, M.S., Christabel, P.H. and Sasikumar, J.M. (2013) In vitro antioxidant, anti-lipid peroxidation activities and HPLC analysis of methanol extracts from bark and stem of Mahonia leschenaultia takeda. Asian J. Plant. Sci. Res., 3,116-126.
  38. Lizcano, L.J., Viloria-Bernal, M., Vicente, F., Berrueta, L.A., Gallo, B., Martínez-Cañamero, M., Ruiz-Larrea, M.B. and Ruiz-Sanz, J.I. (2012) Lipid oxidation inhibitory effects and phenolic composition of aqueous extracts from medicinal plants of Colombian Amazonia. Int. J. Mol. Sci., 13, 5454- 5467. https://doi.org/10.3390/ijms13055454
  39. Christinal, J. and Sumathi, T. (2014) Chronic administration of methylmercury alters cognitive and mitochondrial dysfunction in rat cerebellum - a novel approach to therapy for Minamata disease by a medhya rasayana drug Bacopa monniera. Int. J. Pharm. Bio. Sci., 5, 1183-1194.
  40. Toyama, T., Shinkai, Y., Yasutake, A., Uchida, K., Yamamoto, M. and Kumagai, Y. (2011) Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury. Environ. Health Perspect., 119, 1117-1122. https://doi.org/10.1289/ehp.1003123
  41. Kumagai, Y., Kanda, H., Shinkai, Y. and Toyama, T. (2013) The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury. Oxid. Med. Cell. Longev., 2013, 848279.
  42. Gum, S.I. and Cho, M.K. (2013) Recent updates on acetaminophen hepatotoxicity: the role of Nrf2 in hepatoprotection. Toxicol. Res., 29, 165-172. https://doi.org/10.5487/TR.2013.29.3.165
  43. Arantes, L.P., Peres, T.V., Chen, P., Caito, S.W., Aschner, M. and Soares, F.A. (2016) Guarana (Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Caenorhabditis elegans. Toxicol. Res., 5, 1629-1638. https://doi.org/10.1039/C6TX00161K
  44. Culbreth, M., Zhang, Z. and Aschner, M. (2017) Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology, 62, 200-206. https://doi.org/10.1016/j.neuro.2017.07.028
  45. Bourdineaud, J.P., Durrieu, G., Sarrazin, S.L., da Silva, W.C., Mourao, R.H. and de Oliveira, R.B. (2015) Mercurial exposure of residents of Santarem and Oriximina cities (Para, Brazil) through fish consumption. Environ. Sci. Pollut. Res. Int., 22, 12150-12161. https://doi.org/10.1007/s11356-015-4502-y