DOI QR코드

DOI QR Code

Trajectory Optimization for Impact Angle Control based on Sequential Convex Programming

순차 컨벡스 프로그래밍을 이용한 충돌각 제어 비행궤적 최적화

  • Received : 2018.11.30
  • Accepted : 2018.12.22
  • Published : 2019.01.01

Abstract

Due to the various engagement situations, it is very difficult to generate the optimal trajectory with several constraints. This paper investigates the sequential convex programming for the impact angle control with the additional constraint of altitude limit. Recently, the SOCP(Second-Order Cone Programming), which is one area of the convex optimization, is widely used to solve variable optimal problems because it is robust to initial values, and resolves problems quickly and reliably. The trajectory optimization problem is reconstructed as convex optimization problem using appropriate linearization and discretization. Finally, simulation results are compared with analytic result and nonlinear optimization result for verification.

Keywords

DHJGII_2019_v68n1_159_f0001.png 이미지

그림 1 충돌각 제어를 위한 유도탄 비행궤적 Fig. 1 Missile trajectory for impact angle control

DHJGII_2019_v68n1_159_f0002.png 이미지

그림 2 고도 제한에 따른 충돌각 제어 비행궤적 Fig. 2 Missile trajectory for impact angle control with altitude limit

DHJGII_2019_v68n1_159_f0003.png 이미지

그림 3 속도, 경로각, 받음각에 대한 초기 및 최종 결과 Fig. 3 Initial and final results for velocity, flight path angle and angle-of-attack

DHJGII_2019_v68n1_159_f0004.png 이미지

그림 4 고도 제한에 따른 충돌각 제어 비행궤적 Fig. 4 Missile trajectory for impact angle control with altitude limit

DHJGII_2019_v68n1_159_f0005.png 이미지

그림 5 해석적/수치적 방법에 따른 최적 비행궤적 비교 Fig. 5 Comparison of optimal trajectory with analytic & numerical methods

DHJGII_2019_v68n1_159_f0006.png 이미지

그림 6 수치적 방법에 따른 최적 비행궤적 비교 Fig. 6 Comparison of optimal trajectory with numerical methods

표 1 유도탄 사양 및 초기조건 Table 1 Missile Specification & Initial Conditions

DHJGII_2019_v68n1_159_t0001.png 이미지

표 2 고도 제한에 따른 최소에너지 변화 Table 2 Minimum Energy Variation for Altitude Limits

DHJGII_2019_v68n1_159_t0002.png 이미지

표 3 최적화 방법에 따른 최소에너지 변화 Table 3 Minimum energy variation for optimization methods

DHJGII_2019_v68n1_159_t0003.png 이미지

표 4 최적화 방법에 따른 계산시간 변화 Table 4 Calculation time variation for optimization methods

DHJGII_2019_v68n1_159_t0004.png 이미지

References

  1. C.K. Ryoo, H. Cho, and M.J. Tahk, "Optimal Guidance Laws with Terminal Impact Angle Constraint", Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, pp. 724-732, 2005. https://doi.org/10.2514/1.8392
  2. C. K. Ryoo, H. Cho, and M.J. Tahk, "Time-to-go Weighted Optimal Guidance with Impact Angle Constraints", IEEE Trans. Control System Technology, Vol. 14, No. 3, pp. 483-492, 2006. https://doi.org/10.1109/TCST.2006.872525
  3. B. G. Park, T. H. Kim, and M. J. Tahk, "Optimal Impact Angle Control Guidance Law Considering the Seeker's Field-of-view Limits", Proc. Institution of Mechanical Engineering, Part G, Journal of Aerospace Engineering, Vol. 227, No. 8, pp. 1347-1364, 2013.
  4. B.G. Park, T.H. Kim, and M.J. Tahk, "Range-to-go Weighted Optimal Guidance Law with Impact Angle Constraint and Seeker's Look Angle Limits", IEEE Transaction on Aerospace and Electronic Systems, Vol. 52, No. 3, pp. 1241-1256, 2016. https://doi.org/10.1109/TAES.2016.150415
  5. K.S. Erer and O. Merttopcuoglu, "Indirect Impact-Angle-Control Against Stationary Targets using Biased Pure Proportional Navigation", Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, pp. 700-703, 2012. https://doi.org/10.2514/1.52105
  6. T. H. Kim, B. G. Park and M. J. Tahk, "Bias-Shaping Method for Biased Proportional Navigation with Terminal-Angle Constraint", Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, pp. 1810-1816, 2013. https://doi.org/10.2514/1.59252
  7. R. Tekin and K.S. Erer, "Switched-Gain Guidance for Impact Angle Control under Physical Constraints", Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, pp. 205-216, 2015. https://doi.org/10.2514/1.G000766
  8. P. Lu, "Introducing Computational Guidance and Control", Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, February, 2017.
  9. X. Liu, P. Lu and B. Pan, "Survey of Convex Optimization for Aerospace Applications", Astrodynamics, Vol. 1, No. 1, 2017.
  10. C. R. Hargraves and S. W. Paris, "Direct Trajectory Optimization Using Nonlinear Programming and Collocation", Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987.
  11. J. T. Betts, "Survey of Numerical Methods for Trajectory Optimization", Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998.
  12. B. Acikmese and S.R. Ploen, "Convex Programming Approach to Powered Descent Guidance for Mar Landing", Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007.
  13. L. Blackmore, B. Acikmese and D. P. Scharf, "Minimum-Landing-Error Power-Descent Guidance for Mars Landing Using Convex Optimization", Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010.
  14. X. Liu, Z. Shen, and P. Lu, "Exact Convex Relaxation for Optimal Flight of Aerodynamically Controlled Missiles", IEEE Transaction on Aerospace and Electronic Systems, Vol.52, No.4, Aug. 2016.
  15. X. Liu, Z. Shen, and P. Lu, "Closed-Loop Optimization of Guidance Gain for Constrained Impact", Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017.
  16. X. Liu, Z. Shen, and P. Lu, "Entry Trajectory Optimization by Second-Order Cone Programming", Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016.
  17. M. Szmuk and B. Acikmese, "Successive Convexification for Fuel-Optimal Powered Landing with Aerodynamic Drag and Non-Convex Constraints", AIAA Guidance, Navigation, and Control Conference, AIAA SciTech, California, USA, Jan. 2016.
  18. Y. Mao, M. Szmuk and B. Acikmese, "Successive Convexification of Non-Convex Optimal Control Problems and Its Convergence Properties", IEEE 55th Conference on Decision and Control, Las Vegas, USA, Dec. 2016.
  19. M. Szmuk and B. Acikmese, "Successive Convexification for Mars 6-DoF Powered Descent Landing Guidance", AIAA Guidance, Navigation, and Control Conference, AIAA SciTech, Texas, USA, Jan. 2017.
  20. Y. Mao, D. Dueri, M, Szmuk and B. Acikmese, "Successive Convexification of Non-Convex Optimal Control Problems with State Constraints", IFAC Paper OnLine, Vol. 50, issue 1, July 2017.