DOI QR코드

DOI QR Code

Study on Optimal Structure of Low Power Microheater to Remain Stability at High Temperature

고온에서 안정한 저전력 마이크로히터 구조 최적화 연구

  • Lim, Woonhyun (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Kondalkar, Vijay (Dept. of Electrical and Computer Engineering, Ajou University) ;
  • Lee, Keekeun (Dept. of Electrical and Computer Engineering, Ajou University)
  • Received : 2018.10.10
  • Accepted : 2018.11.29
  • Published : 2019.01.01

Abstract

Microheaters with different structures were fabricated and compared to find an optimal configuration enhancing the performances of $C_2H_2$ gas sensor. Three temperature sensors were integrated on the surface of the insulation layer over the microheater, and resistance changes were observed to check the generated heat from the microheater. A low operating voltage of 1mV was applied to the temperature sensor to minimize any influence of thermal heat from the resistance type temperature sensor, whereas high voltages in the range between 10 and 20V were applied to the microheater. A microheater structure generating maximum heat at low voltage was determined. The generated heat was verified by the temperature sensors on the top of the $Si_3N_4$ and infrared camera. A long term stability and accuracy of the microheater were observed. The developed microheater was applied to enhance the performances of $C_2H_2$ gas sensor and successfully confirmed that the developed microheater greatly contributes to the improvement of sensitivity and selectivity of gas sensor.

Keywords

DHJGII_2019_v68n1_69_f0001.png 이미지

그림 1 마이크로히터 및 온도센서가 집적된 3D 설계도 및 단면도 Fig. 1 3D overall and cross-sectional views of the developed micro-heater and temperature sensor

DHJGII_2019_v68n1_69_f0002.png 이미지

그림 2 제작된 4가지 종류의 마이크로히터 상세 도면 Fig. 2 Specific drawings of the four different types of the proposed micro-heaters

DHJGII_2019_v68n1_69_f0003.png 이미지

그림 3 COMSOL 시뮬레이션을 이용한 마이크로히터 최적 설계 및 표면 열전달 분포도 Fig. 3 Optimal design of microheater using COMSOL simulation and distribution of surface heat transfer

DHJGII_2019_v68n1_69_f0004.png 이미지

그림 4 마이크로히터 및 온도센서 제작과정. (a) PR 패턴닝, (b) 백금/티타늄 금속 증착, (c) 리프트 오프 과정을 통한 마이크로히터 패턴 완성, (d) PECVD를 이용한 Si3N4 절연층 증착, (e) 표면 온도 측정을 위한 온도센서 패턴, (f) 온도센서용 금속 증착, (g) 완성된 센서 Fig. 4 Micro heater and temperature sensor fabrication process. (a) PR patterning, (b) platinum/titanium metal deposition, (c) completion of the microheater pattern through lift off process, (d) deposition of Si3N4 insulating layer using PECVD, (f) metal deposition for temperature sensor, and (g) completed device

DHJGII_2019_v68n1_69_f0005.png 이미지

그림 5 항온항습 챔버내 온도센서 측정 및 마이크로 히터 측정 셋업 Fig. 5 Temperature sensor placed in constant temperature and humidity chamber and micro-heater measurement setup

DHJGII_2019_v68n1_69_f0006.png 이미지

그림 6 완성된 소자의 표면 광학 사진 Fig. 6 Optical view of the completed device

DHJGII_2019_v68n1_69_f0007.png 이미지

그림 7 상부의 온도센서 SEM 및 마이크로히터 및 온도센서를 포함한 단면도 Fig. 7 SEM view of upper temperature sensor and crosssectional view of microheater and temperature sensor

DHJGII_2019_v68n1_69_f0008.png 이미지

그림 8 온도에 따른 표면 온도센서의 저항 변화 Fig. 8 Variation of resistance of surface temperature sensor in terms of applied temperature

DHJGII_2019_v68n1_69_f0009.png 이미지

그림 9 히터에 인가된 전압에 따른 마이크로히터의 표면온도 변화 추이 Fig. 9 Changes of the surface temperature of the microheater in terms of the voltages applied to the heater

DHJGII_2019_v68n1_69_f0010.png 이미지

그림 10 제작된 히터에 전압인가에 따른 표면 온도 분포도 Fig. 10 Infrared temperature distribution in terms of the voltage applied to the heater

DHJGII_2019_v68n1_69_f0011.png 이미지

그림 11 타입 3 마이크로히터의 반복성 결과 Fig. 11 Repeatability results of type 3 microheater

DHJGII_2019_v68n1_69_f0012.png 이미지

그림 12 타입 3 마이크로히터 표면위에서 위치에 따른 열 전달 비교 결과 Fig. 12 Temperature variations on surface depending on positions of type 3 microheater

DHJGII_2019_v68n1_69_f0013.png 이미지

그림 13 (a) 마이크로 히터를 집적한 C2H2 가스센서 도식도, (b) Pt:ZnO nanorod 기반의 제작된 센서, (c) 마이크로히터 를 이용한 온도에 따른 가스 반응도 Fig. 13 (a) Schematic of microheater integrated with C2H2 sensor (b) fabricated Pt : ZnO nanorod-based sensor, and (c) temperature dependence of sensor performance

References

  1. A. Ahmed, J. Dennis, M. Khir, and M. Mohamad Saad, "Design and Characterization of Embedded Microheater on CMOS-MEMS Resonator for Application in Mass- Sensitive Gas Sensors," 5th International Conf. on Intelligent and Advanced Systems, 2014.
  2. Q. Zhoua, A. Sussmana, J. Chang, J. Dong, A. Zettl, and W. Mickelson, "Fast Response Integrated MEMS Microheaters for Ultra Low Power Gas Detection," Sensors and Actuators A, vol. 223, pp. 67-75, March 2015. https://doi.org/10.1016/j.sna.2014.12.005
  3. G. Chung, "The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures," Metals and Materials International, vol. 8, pp. 347-351, 2002. https://doi.org/10.1007/BF03186106
  4. W. Hwang, K. Shin, J. Roh, D. Lee, and S. Choa, "Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors," Sensors, vol. 11, pp. 2580-2591, March 2011. https://doi.org/10.3390/s110302580
  5. W. Chang and Y. Hsihe, "Multilayer Microheater Based on Glass Substrate Using MEMS Technology," Micro-electronic Engineering, vol. 149, pp. 25-30, January 2016. https://doi.org/10.1016/j.mee.2015.09.005
  6. C. Lee, C. Chiang, Y. Wang, and R. Ma, "A Self-heating Gas Sensor with Integrated NiO Thin-film for Formaldehyde Detection," Sensors and Actuators B: Chemical, vol. 122, pp. 503-510, March 2007. https://doi.org/10.1016/j.snb.2006.06.018
  7. M. Aslam, C. Gregory, J. Hatfield, "Polyimide Membrane for Micro-heated Gas Sensor Array", Sensors and Actuators B: Chemical, vol. 103, pp. 153-157, September 2004. https://doi.org/10.1016/j.snb.2004.04.102
  8. O. Gregory and Q. Luo, "A Self-compensated Ceramic Strain Gage for Use at Elevated Temperatures," Sensors and Actuators A, vol. 88, pp. 234-240, January 2001. https://doi.org/10.1016/S0924-4247(00)00513-6
  9. J. Kang, J. Park, K. Park, J. Shin, E. Lee, S. Noh, and H. Lee, "Temperature Control of Micro Heater Using Pt Thin Film Temperature Sensor Embedded in Micro Gas Sensor," Micro and Nano Systems Letters, vol. 5:26, Septermber 2017. https://doi.org/10.1186/s40486-017-0060-z
  10. W. Sripumkhai, A. Lekwichai, W. Bunjongpru, S. Porntheeraphat, B. Tunhoo, E. Ratanaudomphisut, T. Kamsri, C. Hruanun, A. Poyai, and J. Nukeaw, "On-Chip Platinum Micro-Heater with Platinum Temperature Sensor for a Fully Integrated Disposable PCR Module," Advanced Materials Research, vol. 93-94, pp. 129-132, 2010. https://doi.org/10.4028/www.scientific.net/AMR.93-94.129