DOI QR코드

DOI QR Code

삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS

  • 김태훈 (한남대학교 토목환경공학과) ;
  • 장승엽 (한국교통대학교 교통시스템공학과) ;
  • 권성준 (한남대학교 토목환경공학과)
  • Kim, Tae-Hoon (Department of Civil and Environmental Engineering, Hannam University) ;
  • Jang, Seung-Yup (Department of Transportation System Engineering, Korea National University of Transportation) ;
  • Kwon, Seung-Jun (Department of Civil and Environmental Engineering, Hannam University)
  • 투고 : 2019.08.28
  • 심사 : 2019.10.01
  • 발행 : 2019.12.30

초록

고로슬래그 미분말은 뛰어난 염해 저항성 및 내화학성을 가지고 있어 콘크리트에 널리 쓰여왔으나, 고분말도에 따라 수화열과 건조 수축에 의한 균열이 보고되고 있다. 국제 표준에서는 콘크리트에 저분말도 고로슬래그 미분말의 폭 넓은 상용화 및 균열 저감을 위하여 3,000급 저분말도 고로슬래그 미분말이 포함되어 있다. 본 연구에서는 저분말도 고로슬래그 미분말을 치환한 콘크리트(50%의 물-결합재비와 3,000급 고로슬래그 미분말을 60% 치환)와 삼성분계 콘크리트(50% 물-결합재비와 4,000급 고로슬래그 미분말 및 플라이애시를 총 60% 치환)가 고려되었다. 저분말도 고로슬래그 미분말을 치환한 콘크리트와 삼성분계 콘크리트의 강도 차이는 재령 3일차에서 재령 91일차까지 확연한 차이는 없었으며 우수한 염해와 탄산화 저항성을 나타내었다. 또한 적절한 공기량을 함유하여 두 배합 모두 90.0 이상의 높은 내구성 지수를 나타내었다. 배합개선을 통하여 저분말도 GGBFS 콘크리트의 초기강도 개선한다면 낮은 수화열 및 고내구성을 가진 매스 콘크리트를 제조할 수 있으리라 판단된다.

GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

키워드

참고문헌

  1. BS 6699 (1992). Specification for Ground Granulated Blastfurnace Slag for Use with Portland Cement, British Standard.
  2. Choi, Y.C., Jung, S.H., Kim, J.H., Choi, Y.J., Cho, Y.K. (2012). "Properties of high volume fly ash concrete with high blaine fly ash," Proceedings of Korea Concrete Institute Academic Conference, Korea Concrete Institute, Gyeongju, Korea, 375-376 [in Korean].
  3. Guo, L.P., Sun, W., Zheng, K.R., Chen, H.J., Liu, B. (2007). Study on the flexural fatigue performance and fracta mechanism of concrete with high proportions of ground granulated blast furnace slag, Cement and Concrete Research, 37(2), 242-250. https://doi.org/10.1016/j.cemconres.2006.11.009
  4. JIS A 6206 (2013). Ground Granulated Blast-Furnace Slag for Concrete, Japanese Standards Association.
  5. Koh, K.T., Kim, D.G., Kim, S.W., Cho, M.S., Song, Y.C. (2001). A compound deterioration assessment of concrete subjected to freezing-thawing and chloride attack, Journal of the Korea Concrete Institute, 13(4), 397-405 [in Korean]. https://doi.org/10.22636/JKCI.2001.13.4.397
  6. Kwon, S.J., Yang, H.M. (2017). Durability design technique and the related codes : chloride attack and steel corrosion, Journal of the Korea Concrete Institute, 29(6), 33-44 [in Korean]. https://doi.org/10.4334/JKCI.2017.29.1.033
  7. Lee, H.H., Kwon, S.J. (2013). Evaluation of chloride penetration in concrete with ground granulated blast furnace slag considering fineness and replacement ratio, Journal of the Korea Recycled Construction Resources Institute, 1(1), 26-34 [in Korean]. https://doi.org/10.14190/JRCR.2013.1.1.026
  8. Lee, S.H., Cho, S.J., Kwon, S.J. (2019). Evaluation of durability performance in concrete incorporating low fineness of GGBFS (3000 Grade), Journal of the Korea Institute for Structural Maintenance and Inspection, 23(4), 95-101 [in Korean].
  9. Lee, S.H., Kim, W.K., Kang, S.H. (2012). Hydration mechanism of ground granulated blast furnace slag, Journal of the Korea Concrete Institute, 24(6), 31-34 [in Korean].
  10. Liua, J., Qiu, Q., Chen, X., Wang, X., Xing, F., Han, N., He, Y. (2016). Degradation of fly ash concrete under the coupled effect of carbonation aerosol ingress, Corrosion Science, 112, 364-372. https://doi.org/10.1016/j.corsci.2016.08.004
  11. NF EN 15167-1 (2006). Ground Granulated Blast Furnace Slag for use in Concrete, Mortar and Grout-Part 1: Definitions, Specification and Conformity Criteria, Association Francaise de Normalisation.
  12. Ryu, S.H., Shin, K.J., Kim, Y.Y. (2012). Influence of blast furnace slag and anhydrite on strength of shotcrete, Journal of the Korea Concrete Institute, 24(1), 87-95 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.1.087
  13. Seo, C.H., Lee, H.S. (2002). "Mechanism and effect factors of carbonation in concrete," Korea Concrete Institute Academic Conference, Korea Concrete Institute, Hanyang University, Korea, 3-12 [in Korea].
  14. Seo, E.A., Lee, J.H., Lee, H.J., Kim, D.G. (2017). Durability properties of high volume blast furnace slag concrete for application in nuclear power plants, Journal of the Korean Recycled Construction Resources Institute, 5(1), 45-52 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.1.045
  15. Siddique, R., Kaur, D. (2012). Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures, Journal of Advanced Research, 3(1), 45-51. https://doi.org/10.1016/j.jare.2011.03.004
  16. Song, H.W., Pack, S.W., Lee, C.H., Kwon, S.J. (2006). Service life prediction of concrete structures under marine environment considering coupled deterioration, Journal of Restoration of Building and Monument, 12(4), 265-284. https://doi.org/10.1515/rbm-2006-6064
  17. Thomas, M.D.A, Bamforth, P.B. (1999). Modelling chloride diffusion in concrete: effect of fly ash and slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  18. Yang, E.I., Kim, I.S., Yi, S.T., Lee, K.M. (2010). Comparison of measurement methods and prediction models for drying shrinkage of concrete, Journal of the Korea Concrete Institute, 22(1), 85-91 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.1.085