DOI QR코드

DOI QR Code

An Experimental Study on Cylindrical Countermeasures for Dissipation of Debris Flow Energy

원통형 대책 구조물의 토석류의 에너지 저감 효과에 대한 실험적 연구

  • Kim, Beom-Jun (Department of Civil Engineering, Gangneung Wonju National University) ;
  • Han, Kwang-Do (Department of Water Resources, ISAN Corporation) ;
  • Kim, Ho-Seop (Department of Research Institute, ISAN Corporation) ;
  • Choi, Clarence E. (Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology) ;
  • Yune, Chan-Young (Department of Civil Engineering, Gangneung Wonju National University)
  • Received : 2018.10.30
  • Accepted : 2018.11.19
  • Published : 2019.01.01

Abstract

In this study, to investigate the effect of cylindrical countermeasure on the flow characteristics of debris flow, a series of small-scale tests were conducted using a flume with cylindrical baffles. Various heights and row numbers of installed baffles were considered as a test condition. High speed cameras and laser level sensors were also installed at the top and side of the channel, respectively, to capture the debris flow dynamics before and after baffles. Based on test results, the energy dissipation of debris flow due to baffles was analyzed. Test results showed that baffles can significantly reduce the velocity and flow depth of debris flows. The energy dissipation effect of baffles also increase as the increase of height and row number of baffles.

본 연구에서는 원통형 대책 구조물의 설치변화가 토석류의 흐름에 미치는 영향을 확인하기 위해, 대책 구조물을 설치 가능한 소형수로를 제작한 후에 실내모형실험을 실시하였다. 실험은 수로 내에 설치된 구조물의 높이와 종방향 열의 개수를 변화시켜가면서 수행하였다. 대책 구조물이 설치된 수로 측면과 상부에는 초고속 카메라와 레이저 수위센서를 설치하여, 토석류가 구조물을 통과하기 전 후의 흐름변화를 측정하였다. 이를 바탕으로 대책구조물 설치에 따른 토석류의 에너지 저감효과를 비교, 분석하였다. 실험결과, 원통형 대책 구조물의 설치는 토석류의 유속과 흐름깊이를 감소시키는 것으로 나타났다. 또한 구조물의 설치높이와 종방향 열의 개수가 증가할수록 그 영향은 더욱 커지는 것으로 나타났다.

Keywords

HJHGC7_2019_v20n1_57_f0001.png 이미지

Fig. 1. Debris flow baffles in Korea

HJHGC7_2019_v20n1_57_f0002.png 이미지

Fig. 2. Debris flow baffles installed in a basin in front of a rigid barrier in Hong Kong

HJHGC7_2019_v20n1_57_f0003.png 이미지

Fig. 3. Small-scale test

HJHGC7_2019_v20n1_57_f0004.png 이미지

Fig. 4. Cylindrical baffles

HJHGC7_2019_v20n1_57_f0005.png 이미지

Fig. 5. Installation of cylindrical baffles (two rows)

HJHGC7_2019_v20n1_57_f0006.png 이미지

Fig. 6. Experimental setup

HJHGC7_2019_v20n1_57_f0007.png 이미지

Fig. 7. Velocity of debris flow

HJHGC7_2019_v20n1_57_f0008.png 이미지

Fig. 8. Flow depth of debris flow

Table 1. Index properties of Jumunjin sand

HJHGC7_2019_v20n1_57_t0001.png 이미지

Table 2. Test condition

HJHGC7_2019_v20n1_57_t0002.png 이미지

Table 3. Comparison of height of baffle and number of baffle rows

HJHGC7_2019_v20n1_57_t0003.png 이미지

Table 4. Comparison of height of baffle and number of baffle rows

HJHGC7_2019_v20n1_57_t0004.png 이미지

References

  1. Canelli, L., Ferrero, A. M., Migliazza, M. and Segalini, A. (2012), Debris flow risk mitigation by the means of rigid and flexible barriers-experimental tests and impact analysis, Natural Hazards and Earth System Sciences, Vol. 12, No. 5, pp. 1693-1699. https://doi.org/10.5194/nhess-12-1693-2012
  2. Choi, C. E., Ng, C. W. W., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S. and Koo, R. C. H. (2014), Flume investigation of landslide debris baffles, Canadian Geotechnical Journal, Vol. 51, No. 5, pp. 540-553. https://doi.org/10.1139/cgj-2013-0115
  3. Choi, C. E., Ng, C. W. W., Goodwin, G. R., Liu, H. and Kwan, J. S. H. (2016), Flume investigation of the influence of rigid barrier deflector angle on dry granular overflow mechanisms, Canadian Geotechnical Journal, Vol. 53, No. 10, pp. 1751-1759. https://doi.org/10.1139/cgj-2015-0248
  4. Choi, S. K., Lee, J. M., Jeong, H. B., Kim, J. H. and Kwon, T. H. (2015), Effect of arrangement of slit-type barriers on debris flow behavior : laboratory-scaled experiment, Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 3, pp. 223-228 (In Korean). https://doi.org/10.9798/KOSHAM.2015.15.3.223
  5. Cho, S. H., Yoo, B. S., Kim, J. H. and Lee, K. S. (2016), Performance assessment for debris mitigation structure by using scale model tests, Journal of Korean Society of Hazard Mitigation, Vol. 16, No. 5, pp. 247-260 (In Korean). https://doi.org/10.9798/KOSHAM.2016.16.5.247
  6. Chen, Y., Qiu, Z., Li. B. and Yang, Z. (2018), Numerical simulation on the dynamic characteristics of a tremendous debris flow in Sichuan, China, Processes, Vol. 6, No. 8, pp. 1-13. https://doi.org/10.3390/pr6010001
  7. Jun, K. J., Lee, S. D., Kim, G. H., Lee, S. W. and Yune, C. Y. (2015), Verification of countermeasures by velocity estimation of real scale debris flow test, 6th International Conference on Debris flow Hazard Mitigation : Mechanics, Prediction and Assessment, Japan, DFHM 6TH International Conference on Debris-flow.
  8. Jung, W. G. (2017), Experimental study on the analysis of effects of debris flow reduction facilities, M.S. Thesis, Gangwon National University, Korea (In Korean).
  9. Keo, S. A., Chhun, K. T., Choi, C. E., Han K. D. and Yune, C. Y. (2018), Physical modeling of debris flow based on Froude number by using Jumunjin standard sand, 5th International Debris Flow Workshop Symposium on Silk Roads Disaster Mitigation, Beijing, China.
  10. Kim, S. T., Kim, J. J., Kyeon, T. S. and Yoo, H. K. (2018), Study on optimum screen spacing of buttress dam, Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 4, pp. 165-173 (In Korean). https://doi.org/10.9798/kosham.2018.18.4.165
  11. Lim, Y. H., Jeon, G. U., Kim, M. S., Yeom, G. J. and Lee, J. H. (2008), Capture effect of slit dam for debris flow and woody debris with hydraulic model experiment: focusing on a and d type. Proceeding of 2008 Summer Conference of Korean Forest Society, Korean Forest Society, pp. 343-344 (In Korean).
  12. Ng, C. W. W., Choi, C. E., Song, D., Kwan, J. S. H., Shiu, H. Y. K., Ho, K. K. S. and Koo, R. C. H. (2014), Physical modelling of baffles influence on landslide debris mobility, Landslides, Vol. 12, No. 1, pp. 1-18. https://doi.org/10.1007/s10346-014-0476-y
  13. Takahara, T. and Matsumura, K. (2008), Experimental study of the sediment trap effect of steel grid-type sabo dams, International Journal of Erosion control Engineering, Vol. 1, No. 2, pp. 73-78. https://doi.org/10.13101/ijece.1.73
  14. Teufelsbauer, H., Wang, Y., Pudasaini, S. P., Borja, R. I. and Wu, W. (2011), DEM simulation of impact force exerted by granular flow on rigid structures, Acta Geotechnica, Vol. 6, pp. 119-133. https://doi.org/10.1007/s11440-011-0140-9
  15. Wenbing, H. and Guoqiang, O. (2006), Efficiency of slit dam prevention against non-viscous debris flow, Journal of natural sciences, Vol. 11, No. 4, pp. 865-869.
  16. Wang, F., Chen, X., Chen, J. and You, Y. (2017), Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles, Engineering Geology, Vol. 220, pp. 43-51. https://doi.org/10.1016/j.enggeo.2017.01.014
  17. Xie, T., Yang, H., Wei, F., Gardner, J. S., Dai, Z. and Xie, X. (2014), A new water-sediment separation structure for debris flow defense and its model test, Bulletin of Engineering Geology and Environment, Vol. 73, No. 4, pp. 947-958. https://doi.org/10.1007/s10064-014-0585-9