Fig 1. A) Transmission electron microscopic image of flagellated cells of the wild type strain Z. mobilis ZM4; B) flocculent cells of the mutant strain ZM401 image stained by calcofluor white, the source adapted from Jeon et al. [22].
Fig 2. Schematic diagram of cell flocculating mechanims in Z. mobilis ZM401 caused by a single point mutation in phophodiesterase domain which allow to increase intracellular level of c-di-GMP. The increased intracellular c-di-GMP subsequently results in increase in cellulose synthsis and decrease in motility. The increased cellulose synthesis metabolism with increased cell flocculation phenotype finally contributed to the enhanced volumatric ethanol productivity due to the acetate and vanillin resistance. DGC: Diguanyl cylase; PDE: Phophodiesterase.
Table 1. The list of Z. mobilis strains genome sequenced
Table 2. The list of heterologous genes expressed in Z. mobilis to broaden its substrate usages for ethanol production
Table 3. Effect of lignocellulosic inhibitory compounds on specific rates of xylose uptake, ethanol production, and ethanol yield of Z. mobilis ZM4 (pZB5) at 30℃ and initial pH 6 investigated by Kim et al. [25]
Table 4. List of genes from Z. mobilis involved in stress responds confirmed by various techniques
참고문헌
- Agrawal, M. and Chen, R. R. 2011. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol. Lett. 33, 2127-2133. https://doi.org/10.1007/s10529-011-0677-6
- Alvin, A., Kim, J., Jeong, G. T., Tsang, Y. F., Kwon, E. E. and Neilan, B. A., et al. 2017. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Appl. Microbiol. Biotechnol. 101, 5089-5099. https://doi.org/10.1007/s00253-017-8248-y
- Barrow, K. D., Collins, J .G., Leight, D. A., Rogers, P. L. and Warr, R. G. 1984. Sorbitol production by Zymomonas mobilis. Appl. Microbiol. Biotechnol. 20, 225-232. https://doi.org/10.1007/BF00250630
- Chacon-Vargas, K., Chirino, A. A., Davis, M. M., Debler, S. A., Haimer, W. R. and Wilbur, J. J., et al. 2017. Genome Sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960. Genome Announc. 5, e00562-17.
- Charoensuk, K., Sakurada, T., Tokiyama, A., Murata, M., Kosaka, T. and Thanonkeo, P., et al. 2017. Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548. Biotechnol. Biofuels. 10, 204. https://doi.org/10.1186/s13068-017-0891-0
- Cho, S. H., Lei, R., Henninger, T. D. and Contreras, L. M. 2014. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis. Appl. Environ. Microbiol. 80, 4189-4198. https://doi.org/10.1128/AEM.00429-14
-
De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G. and Wiechert, W., et al. 1999. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by
$^{13}C$ - and$^{31}P$ -NMR spectroscopy. Arch. Microbiol. 171, 371-385. https://doi.org/10.1007/s002030050724 - Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62, 4465-4470. https://doi.org/10.1128/AEM.62.12.4465-4470.1996
- Desiniotis, A., Kouvelis, V. N., Davenport, K., Bruce, D., Detter, C. and Tapia, R., et al. 2012. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J. Bacteriol. 194, 5966-5967. https://doi.org/10.1128/JB.01398-12
- Dunn, K. L. and Rao, C. V. 2014. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98, 6897-6905. https://doi.org/10.1007/s00253-014-5812-6
- Feldmann, S. D., Sahm, H. and Sprenger, G. A. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38, 354-361. https://doi.org/10.1007/BF00170086
- Franden, M. A., Pienkos, P. T. and Zhang, M. 2009. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. https://doi.org/10.1016/j.jbiotec.2009.08.006
- Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T. and Zhang, M. 2013. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels. 6, 99. https://doi.org/10.1186/1754-6834-6-99
- Gu, H., Zhang, J. and Bao, J. 2015. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioengin. 112, 1770-1782. https://doi.org/10.1002/bit.25603
- Haft, R. J., Keating, D. H., Schwaegler, T., Schwalbach, M. S., Vinokur, J. and Tremaine, M., et al. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc. Natl. Acad. Sci. USA. 111, E2576-2585. https://doi.org/10.1073/pnas.1401853111
- He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R., et al. 2012. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol. Biofuels. 5, 75. https://doi.org/10.1186/1754-6834-5-75
- He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R. 2012. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199. https://doi.org/10.1007/s00253-012-4155-4
- Hermans, M. A., Neuss, B. and Sahm, H. 1991. Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J. Bacteriol. 173, 5592-5595. https://doi.org/10.1128/jb.173.17.5592-5595.1991
- Horbach, S., Neuss, B. and Sahm, H. 1991. Effect of azasqualene on hopanoid biosynthesis and ethanol tolerance of Zymomonas mobilis. FEMS Microbiol. Lett. 79, 347-350. https://doi.org/10.1111/j.1574-6968.1991.tb04553.x
- Ingram, L. O. 1986. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4, 40-44. https://doi.org/10.1016/0167-7799(86)90152-6
- Ingram, L. O. 1989. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9, 305-319. https://doi.org/10.3109/07388558909036741
- Jeon, Y. J., Xun, Z., Su, P. and Rogers, P. L. 2012. Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 93, 2513-2518. https://doi.org/10.1007/s00253-012-3948-9
- Joachimsthal, E., Haggett, K. D., Jang, J. H. and Rogers, P. L. 1998. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol. Lett. 20.
-
Kremer, T. A., LaSarre, B., Posto, A. L. and McKinlay, J. B. 2015.
$N_{2}$ gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. USA. 112, 2222-2226. https://doi.org/10.1073/pnas.1420663112 - Kim, I. S., Barrow, K. D. and Rogers, P. L. 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86, 357-370. https://doi.org/10.1385/ABAB:84-86:1-9:357
- Kouvelis, V. N., Davenport, K. W., Brettin, T. S., Bruce, D., Detter, C. and Han, C. S., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192. J. Bacteriol. 193, 5049-5050. https://doi.org/10.1128/JB.05273-11
- Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D., Detter, C. and Han, C., et al. 2009. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J. Bacteriol. 191, 7140-7141. https://doi.org/10.1128/JB.01084-09
- Kouvelis, V. N., Teshima, H., Bruce, D., Detter, C., Tapia, R. and Han, C., et al. 2014. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol roducer. Genome Announc. 2, e00845-13.
- Lee, J. H., Skotnicki, M. L. and Rogers, P. L. 1982. Kinetic studies on a flocculent strain of Zymomonas mobilis. Biotechnol. Lett. 4, 615-620. https://doi.org/10.1007/BF00127795
- Liu, C., Dong, H., Zhong, J., Ryu, D. D. and Bao, J. 2010. Sorbitol production using recombinant Zymomonas mobilis strain. J. Biotechnol. 148, 105-112. https://doi.org/10.1016/j.jbiotec.2010.04.008
- Liu, Y. F., Hsieh, C. W., Chang, Y. S. and Wung, B. S. 2017. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 17, 63. https://doi.org/10.1186/s12896-017-0385-y
- Loos, H., Kramer, R., Sahm, H. and Sprenger, G. A. 1994. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J. Bacteriol. 176, 7688-7693. https://doi.org/10.1128/jb.176.24.7688-7693.1994
- Matsushita, K., Azuma, Y., Kosaka, T., Yakushi, T., Hoshida, H. and Akada, R., et al. 2016. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 80, 655-668. https://doi.org/10.1080/09168451.2015.1104235
- Mohagheghi, A., Dowe, N., Schell, D., Chou, Y. C., Eddy, C. and Zhang, M. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett. 26, 321-325. https://doi.org/10.1023/B:BILE.0000015451.96737.96
- Moreau, R. A., Powell, M. J., Fett, W. F. and Whitaker, B. D. 1997. News & notes: the effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Curr. Microbiol. 35, 124-128. https://doi.org/10.1007/s002849900224
- Pappas, K, M., Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D. and Detter, C., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. J. Bacteriol. 193, 5051-5052. https://doi.org/10.1128/JB.05395-11
- Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H. G. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263-288.
- Rogers, P. L., Lee, K. J. and Tribe, D. E. 1979. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1, 165-170. https://doi.org/10.1007/BF01388142
- Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C. and Kim, J. J., et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23, 63-68. https://doi.org/10.1038/nbt1045
- Shigeri, Y., Nishino, T., Yumoto, N. and Tokushige, M. 1991. Hopanoid biosynthesis of Zymomonas mobilis. Agric. Biol. Chem. 55, 589-591. https://doi.org/10.1271/bbb1961.55.589
- Sootsuwan, K., Thanonkeo, P., Keeratirakha, N., Thanonkeo, S., Jaisil, P. and Yamada, M. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6, 180. https://doi.org/10.1186/1754-6834-6-180
- Tan, F., Wu, B., Dai, L., Qin, H., Shui, Z. and Wang, J., et al. 2016. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact. 15, 4. https://doi.org/10.1186/s12934-015-0398-y
- Tan, F. R., Dai, L. C., Wu, B., Qin, H., Shui, Z. X. and Wang, J. L., et al. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl. Microbiol. Biotechnol. 99, 5363-5371. https://doi.org/10.1007/s00253-015-6577-2
- Van Uden, N. and da Cruz Duarte, H. 1981. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. J. Basic Microbiol. 21, 743-750.
- Wang, H., Cao, S., Wang, W. T., Wang, K. T. and Jia, X. 2016. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J. Ind. Microbiol. Biotechnol. 43, 861-871. https://doi.org/10.1007/s10295-016-1761-7
- Wang, J. L., Wu, B., Qin, H., You, Y., Liu, S. and Shui, Z. X., et al. 2016. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microb. Cell Fact. 15, 101. https://doi.org/10.1186/s12934-016-0503-x
- Wang, X., Gao, Q. and Bao, J. 2017. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels. 10, 24. https://doi.org/10.1186/s13068-017-0714-3
- Wilke, D. 1999. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol. 52, 135-145. https://doi.org/10.1007/s002530051500
- Xia, J., Liu, C. G., Zhao, X. Q., Xiao, Y., Xia, X. X. and Bai, F. W. 2018. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioengin. 115, 2714-2525 https://doi.org/10.1002/bit.26806
- Yang, S., Fei, Q., Zhang, Y., Contreras, L. M., Utturkar, S. M. and Brown, S. D., et al. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial. Biotechnol. 9, 699-717. https://doi.org/10.1111/1751-7915.12408
- Yang, S., Franden, M. A., Brown, S. D., Chou, Y. C., Pienkos, P. T. and Zhang, M. 2014. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels. 7, 140. https://doi.org/10.1186/s13068-014-0140-8
- Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A, Lu, T. Y. and Martin, S. L., et al. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 107, 10395-10400. https://doi.org/10.1073/pnas.0914506107
- Yang, S., Mohagheghi, A., Franden, M. A., Chou, Y. C., Chen, X. and Dowe, N., et al. 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels. 9, 189. https://doi.org/10.1186/s13068-016-0606-y
- Yang, S., Pan, C., Hurst, G. B., Dice, L., Davison, B. H. and Brown, S. D. 2014. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Front. Microbiol. 5, 246. https://doi.org/10.3389/fmicb.2014.00246
- Yang, S., Pan, C., Tschaplinski, T. J., Hurst, G. B., Engle, N. L. and Zhou, W., et al. 2013. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 7, e68886.
- Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G. L. and Hurst, G. B., et al. 2009. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27, 893-894. https://doi.org/10.1038/nbt1009-893
- Yang, S., Pelletier, D. A., Lu, T. Y. and Brown, S. D. 2010. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10, 135. https://doi.org/10.1186/1471-2180-10-135
- Yang, S., Vera, J. M., Grass, J., Savvakis, G., Moskvin, O. V. and Yang, Y., et al. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol. Biofuels. 11, 125. https://doi.org/10.1186/s13068-018-1116-x
- Yi, X., Gu, H., Gao, Q., Liu, Z. L. and Bao, J. 2015. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels. 8, 153. https://doi.org/10.1186/s13068-015-0333-9
- Yomano, L. P., York, S. W. and Ingram, L. O. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132-138. https://doi.org/10.1038/sj.jim.2900496
- Zhang, K., Shao, H., Cao, Q., He, M. X., Wu, B. and Feng, H. 2015. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 99, 2009. https://doi.org/10.1007/s00253-014-6342-y
- Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240-243. https://doi.org/10.1126/science.267.5195.240
- Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb. Cell Fact. 12, 41-41. https://doi.org/10.1186/1475-2859-12-41
- Zhao, N., Bai, Y., Liu, C. G., Zhao, X. Q., Xu, J. F. and Bai, F. W. 2014. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9, 362-371. https://doi.org/10.1002/biot.201300367
- Zhao, N., Bai, Y., Zhao, X. Q., Yang, Z. Y. and Bai, F. W. 2012. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J. Bacteriol. 194, 7008-7009. https://doi.org/10.1128/JB.01947-12
- Zhao, N., Pan, Y., Liu, H. and Cheng, Z. 2016. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 4, e00193-16.