DOI QR코드

DOI QR Code

Zymomonas mobilis를 이용한 목질계 에탄올 생산을 위한 균주 개선에 관한 연구 동향

Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production

  • 전용재 (부경대학교, 미생물학과 응용미생물연구실)
  • Jeon, Young Jae (Department of Microbiology, Pukyong National University)
  • 투고 : 2018.12.05
  • 심사 : 2019.01.03
  • 발행 : 2019.01.30

초록

자이모모나스 모빌리스(Zymomonas mobilis)는 수십 년 동안 생화학적 발효 기술을 통한 수송용 에탄올을 생산하기에 적합한 산업용 미생물로 각광을 받아왔다. 최근 이 균주의 포스트 게놈 시대 도래 및 미국 듀폰사(DuPont, USA)의 세계 최대 산업용 목질계 에탄올 생산 시설 완료 등은, 이 미생물을 이용한 산업적 에탄올 생산 공정 가시화를 위한 다양한 연구들을 파생시키고 있다. 특히, 산업용 셀룰로오스 에탄올 발효공정에 이용되는 미생물은 다양한 독성 발효 저해물질 및 물리적 스트레스에 보다 쉽게 노출 될 수 있다. 따라서 본 논문은 이 미생물이 보유한 최신 생리학적 이해와 관련 된 정보와 다양한 환경적 스트레스에 견딜 수 있는 산업적 강건성 및 산업용 균주 개발 방법에 대한 사례 및 이 균주를 이용한 가격 경쟁적인 목질계 에탄올 생산 공정 개발에 필요한 균주 개발에 대한 미래 지향적 연구 방향에 대하여 기술하였다.

Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent announcement of DuPont's world largest cellulosic ethanol production process, research on this bacterium has become even more important to harness successful application not only for use in the bioethanol process but also in other biochemical processes, which can be included in bio-refinery. As an important industrial microorganism, Z. mobilis will likely be exposed to various stressful environments, such as toxic chemicals, including the end-product ethanol and fermentative inhibitory compounds (e.g., furan derivatives, organic acids, and lignin derivatives in pretreatment steps), as well as physical stresses, such as high temperature during large-scale ethanol fermentation. This review focuses on recent information related to the industrial robustness of this bacterium and strain development to improve the ethanol yield and productivity in the lignocellulosic ethanol process. Although several excellent review articles on the strain development of this bacterium have been published, this review aims to fill gaps in the literature by highlighting recent advances in physiological understanding of this bacterium that may aid strain developments and improve the ethanol productivity for lignocellulosic biomass.

키워드

SMGHBM_2019_v29n1_135_f0001.png 이미지

Fig 1. A) Transmission electron microscopic image of flagellated cells of the wild type strain Z. mobilis ZM4; B) flocculent cells of the mutant strain ZM401 image stained by calcofluor white, the source adapted from Jeon et al. [22].

SMGHBM_2019_v29n1_135_f0002.png 이미지

Fig 2. Schematic diagram of cell flocculating mechanims in Z. mobilis ZM401 caused by a single point mutation in phophodiesterase domain which allow to increase intracellular level of c-di-GMP. The increased intracellular c-di-GMP subsequently results in increase in cellulose synthsis and decrease in motility. The increased cellulose synthesis metabolism with increased cell flocculation phenotype finally contributed to the enhanced volumatric ethanol productivity due to the acetate and vanillin resistance. DGC: Diguanyl cylase; PDE: Phophodiesterase.

Table 1. The list of Z. mobilis strains genome sequenced

SMGHBM_2019_v29n1_135_t0001.png 이미지

Table 2. The list of heterologous genes expressed in Z. mobilis to broaden its substrate usages for ethanol production

SMGHBM_2019_v29n1_135_t0002.png 이미지

Table 3. Effect of lignocellulosic inhibitory compounds on specific rates of xylose uptake, ethanol production, and ethanol yield of Z. mobilis ZM4 (pZB5) at 30℃ and initial pH 6 investigated by Kim et al. [25]

SMGHBM_2019_v29n1_135_t0003.png 이미지

Table 4. List of genes from Z. mobilis involved in stress responds confirmed by various techniques

SMGHBM_2019_v29n1_135_t0004.png 이미지

참고문헌

  1. Agrawal, M. and Chen, R. R. 2011. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Biotechnol. Lett. 33, 2127-2133. https://doi.org/10.1007/s10529-011-0677-6
  2. Alvin, A., Kim, J., Jeong, G. T., Tsang, Y. F., Kwon, E. E. and Neilan, B. A., et al. 2017. Industrial robustness linked to the gluconolactonase from Zymomonas mobilis. Appl. Microbiol. Biotechnol. 101, 5089-5099. https://doi.org/10.1007/s00253-017-8248-y
  3. Barrow, K. D., Collins, J .G., Leight, D. A., Rogers, P. L. and Warr, R. G. 1984. Sorbitol production by Zymomonas mobilis. Appl. Microbiol. Biotechnol. 20, 225-232. https://doi.org/10.1007/BF00250630
  4. Chacon-Vargas, K., Chirino, A. A., Davis, M. M., Debler, S. A., Haimer, W. R. and Wilbur, J. J., et al. 2017. Genome Sequence of Zymomonas mobilis subsp. mobilis NRRL B-1960. Genome Announc. 5, e00562-17.
  5. Charoensuk, K., Sakurada, T., Tokiyama, A., Murata, M., Kosaka, T. and Thanonkeo, P., et al. 2017. Thermotolerant genes essential for survival at a critical high temperature in thermotolerant ethanologenic Zymomonas mobilis TISTR 548. Biotechnol. Biofuels. 10, 204. https://doi.org/10.1186/s13068-017-0891-0
  6. Cho, S. H., Lei, R., Henninger, T. D. and Contreras, L. M. 2014. Discovery of ethanol-responsive small RNAs in Zymomonas mobilis. Appl. Environ. Microbiol. 80, 4189-4198. https://doi.org/10.1128/AEM.00429-14
  7. De Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmitz, G. and Wiechert, W., et al. 1999. Metabolic state of Zymomonas mobilis in glucose-, fructose-, and xylose-fed continuous cultures as analysed by $^{13}C$- and $^{31}P$-NMR spectroscopy. Arch. Microbiol. 171, 371-385. https://doi.org/10.1007/s002030050724
  8. Deanda, K., Zhang, M., Eddy, C. and Picataggio, S. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62, 4465-4470. https://doi.org/10.1128/AEM.62.12.4465-4470.1996
  9. Desiniotis, A., Kouvelis, V. N., Davenport, K., Bruce, D., Detter, C. and Tapia, R., et al. 2012. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J. Bacteriol. 194, 5966-5967. https://doi.org/10.1128/JB.01398-12
  10. Dunn, K. L. and Rao, C. V. 2014. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl. Microbiol. Biotechnol. 98, 6897-6905. https://doi.org/10.1007/s00253-014-5812-6
  11. Feldmann, S. D., Sahm, H. and Sprenger, G. A. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Appl. Microbiol. Biotechnol. 38, 354-361. https://doi.org/10.1007/BF00170086
  12. Franden, M. A., Pienkos, P. T. and Zhang, M. 2009. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J. Biotechnol. 144, 259-267. https://doi.org/10.1016/j.jbiotec.2009.08.006
  13. Franden, M. A., Pilath, H. M., Mohagheghi, A., Pienkos, P. T. and Zhang, M. 2013. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels. 6, 99. https://doi.org/10.1186/1754-6834-6-99
  14. Gu, H., Zhang, J. and Bao, J. 2015. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnol. Bioengin. 112, 1770-1782. https://doi.org/10.1002/bit.25603
  15. Haft, R. J., Keating, D. H., Schwaegler, T., Schwalbach, M. S., Vinokur, J. and Tremaine, M., et al. 2014. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc. Natl. Acad. Sci. USA. 111, E2576-2585. https://doi.org/10.1073/pnas.1401853111
  16. He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R., et al. 2012. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol. Biofuels. 5, 75. https://doi.org/10.1186/1754-6834-5-75
  17. He, M. X., Wu, B., Shui, Z. X., Hu, Q. C., Wang, W. G. and Tan, F. R. 2012. Transcriptome profiling of Zymomonas mobilis under furfural stress. Appl. Microbiol. Biotechnol. 95, 189-199. https://doi.org/10.1007/s00253-012-4155-4
  18. Hermans, M. A., Neuss, B. and Sahm, H. 1991. Content and composition of hopanoids in Zymomonas mobilis under various growth conditions. J. Bacteriol. 173, 5592-5595. https://doi.org/10.1128/jb.173.17.5592-5595.1991
  19. Horbach, S., Neuss, B. and Sahm, H. 1991. Effect of azasqualene on hopanoid biosynthesis and ethanol tolerance of Zymomonas mobilis. FEMS Microbiol. Lett. 79, 347-350. https://doi.org/10.1111/j.1574-6968.1991.tb04553.x
  20. Ingram, L. O. 1986. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4, 40-44. https://doi.org/10.1016/0167-7799(86)90152-6
  21. Ingram, L. O. 1989. Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9, 305-319. https://doi.org/10.3109/07388558909036741
  22. Jeon, Y. J., Xun, Z., Su, P. and Rogers, P. L. 2012. Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 93, 2513-2518. https://doi.org/10.1007/s00253-012-3948-9
  23. Joachimsthal, E., Haggett, K. D., Jang, J. H. and Rogers, P. L. 1998. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol. Lett. 20.
  24. Kremer, T. A., LaSarre, B., Posto, A. L. and McKinlay, J. B. 2015. $N_{2}$ gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc. Natl. Acad. Sci. USA. 112, 2222-2226. https://doi.org/10.1073/pnas.1420663112
  25. Kim, I. S., Barrow, K. D. and Rogers, P. L. 2000. Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). Appl. Biochem. Biotechnol. 84-86, 357-370. https://doi.org/10.1385/ABAB:84-86:1-9:357
  26. Kouvelis, V. N., Davenport, K. W., Brettin, T. S., Bruce, D., Detter, C. and Han, C. S., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. pomaceae lectotype strain ATCC 29192. J. Bacteriol. 193, 5049-5050. https://doi.org/10.1128/JB.05273-11
  27. Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D., Detter, C. and Han, C., et al. 2009. Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163. J. Bacteriol. 191, 7140-7141. https://doi.org/10.1128/JB.01084-09
  28. Kouvelis, V. N., Teshima, H., Bruce, D., Detter, C., Tapia, R. and Han, C., et al. 2014. Finished genome of Zymomonas mobilis subsp. mobilis strain CP4, an applied ethanol roducer. Genome Announc. 2, e00845-13.
  29. Lee, J. H., Skotnicki, M. L. and Rogers, P. L. 1982. Kinetic studies on a flocculent strain of Zymomonas mobilis. Biotechnol. Lett. 4, 615-620. https://doi.org/10.1007/BF00127795
  30. Liu, C., Dong, H., Zhong, J., Ryu, D. D. and Bao, J. 2010. Sorbitol production using recombinant Zymomonas mobilis strain. J. Biotechnol. 148, 105-112. https://doi.org/10.1016/j.jbiotec.2010.04.008
  31. Liu, Y. F., Hsieh, C. W., Chang, Y. S. and Wung, B. S. 2017. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 17, 63. https://doi.org/10.1186/s12896-017-0385-y
  32. Loos, H., Kramer, R., Sahm, H. and Sprenger, G. A. 1994. Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J. Bacteriol. 176, 7688-7693. https://doi.org/10.1128/jb.176.24.7688-7693.1994
  33. Matsushita, K., Azuma, Y., Kosaka, T., Yakushi, T., Hoshida, H. and Akada, R., et al. 2016. Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations. Biosci. Biotechnol. Biochem. 80, 655-668. https://doi.org/10.1080/09168451.2015.1104235
  34. Mohagheghi, A., Dowe, N., Schell, D., Chou, Y. C., Eddy, C. and Zhang, M. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett. 26, 321-325. https://doi.org/10.1023/B:BILE.0000015451.96737.96
  35. Moreau, R. A., Powell, M. J., Fett, W. F. and Whitaker, B. D. 1997. News & notes: the effect of ethanol and oxygen on the growth of Zymomonas mobilis and the levels of hopanoids and other membrane lipids. Curr. Microbiol. 35, 124-128. https://doi.org/10.1007/s002849900224
  36. Pappas, K, M., Kouvelis, V. N., Saunders, E., Brettin, T. S., Bruce, D. and Detter, C., et al. 2011. Genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis lectotype strain ATCC 10988. J. Bacteriol. 193, 5051-5052. https://doi.org/10.1128/JB.05395-11
  37. Rogers, P. L., Jeon, Y. J., Lee, K. J. and Lawford, H. G. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng. Biotechnol. 108, 263-288.
  38. Rogers, P. L., Lee, K. J. and Tribe, D. E. 1979. Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1, 165-170. https://doi.org/10.1007/BF01388142
  39. Seo, J. S., Chong, H., Park, H. S., Yoon, K. O., Jung, C. and Kim, J. J., et al. 2005. The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat. Biotechnol. 23, 63-68. https://doi.org/10.1038/nbt1045
  40. Shigeri, Y., Nishino, T., Yumoto, N. and Tokushige, M. 1991. Hopanoid biosynthesis of Zymomonas mobilis. Agric. Biol. Chem. 55, 589-591. https://doi.org/10.1271/bbb1961.55.589
  41. Sootsuwan, K., Thanonkeo, P., Keeratirakha, N., Thanonkeo, S., Jaisil, P. and Yamada, M. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol. Biofuels. 6, 180. https://doi.org/10.1186/1754-6834-6-180
  42. Tan, F., Wu, B., Dai, L., Qin, H., Shui, Z. and Wang, J., et al. 2016. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb. Cell Fact. 15, 4. https://doi.org/10.1186/s12934-015-0398-y
  43. Tan, F. R., Dai, L. C., Wu, B., Qin, H., Shui, Z. X. and Wang, J. L., et al. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl. Microbiol. Biotechnol. 99, 5363-5371. https://doi.org/10.1007/s00253-015-6577-2
  44. Van Uden, N. and da Cruz Duarte, H. 1981. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. J. Basic Microbiol. 21, 743-750.
  45. Wang, H., Cao, S., Wang, W. T., Wang, K. T. and Jia, X. 2016. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. J. Ind. Microbiol. Biotechnol. 43, 861-871. https://doi.org/10.1007/s10295-016-1761-7
  46. Wang, J. L., Wu, B., Qin, H., You, Y., Liu, S. and Shui, Z. X., et al. 2016. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microb. Cell Fact. 15, 101. https://doi.org/10.1186/s12934-016-0503-x
  47. Wang, X., Gao, Q. and Bao, J. 2017. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol. Biofuels. 10, 24. https://doi.org/10.1186/s13068-017-0714-3
  48. Wilke, D. 1999. Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry. Appl. Microbiol. Biotechnol. 52, 135-145. https://doi.org/10.1007/s002530051500
  49. Xia, J., Liu, C. G., Zhao, X. Q., Xiao, Y., Xia, X. X. and Bai, F. W. 2018. Contribution of cellulose synthesis, formation of fibrils and their entanglement to the self-flocculation of Zymomonas mobilis. Biotechnol. Bioengin. 115, 2714-2525 https://doi.org/10.1002/bit.26806
  50. Yang, S., Fei, Q., Zhang, Y., Contreras, L. M., Utturkar, S. M. and Brown, S. D., et al. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial. Biotechnol. 9, 699-717. https://doi.org/10.1111/1751-7915.12408
  51. Yang, S., Franden, M. A., Brown, S. D., Chou, Y. C., Pienkos, P. T. and Zhang, M. 2014. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates. Biotechnol. Biofuels. 7, 140. https://doi.org/10.1186/s13068-014-0140-8
  52. Yang, S., Land, M. L., Klingeman, D. M., Pelletier, D. A, Lu, T. Y. and Martin, S. L., et al. 2010. Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 107, 10395-10400. https://doi.org/10.1073/pnas.0914506107
  53. Yang, S., Mohagheghi, A., Franden, M. A., Chou, Y. C., Chen, X. and Dowe, N., et al. 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnol. Biofuels. 9, 189. https://doi.org/10.1186/s13068-016-0606-y
  54. Yang, S., Pan, C., Hurst, G. B., Dice, L., Davison, B. H. and Brown, S. D. 2014. Elucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics. Front. Microbiol. 5, 246. https://doi.org/10.3389/fmicb.2014.00246
  55. Yang, S., Pan, C., Tschaplinski, T. J., Hurst, G. B., Engle, N. L. and Zhou, W., et al. 2013. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses. PLoS One 7, e68886.
  56. Yang, S., Pappas, K. M., Hauser, L. J., Land, M. L., Chen, G. L. and Hurst, G. B., et al. 2009. Improved genome annotation for Zymomonas mobilis. Nat. Biotechnol. 27, 893-894. https://doi.org/10.1038/nbt1009-893
  57. Yang, S., Pelletier, D. A., Lu, T. Y. and Brown, S. D. 2010. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 10, 135. https://doi.org/10.1186/1471-2180-10-135
  58. Yang, S., Vera, J. M., Grass, J., Savvakis, G., Moskvin, O. V. and Yang, Y., et al. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnol. Biofuels. 11, 125. https://doi.org/10.1186/s13068-018-1116-x
  59. Yi, X., Gu, H., Gao, Q., Liu, Z. L. and Bao, J. 2015. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol. Biofuels. 8, 153. https://doi.org/10.1186/s13068-015-0333-9
  60. Yomano, L. P., York, S. W. and Ingram, L. O. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20, 132-138. https://doi.org/10.1038/sj.jim.2900496
  61. Zhang, K., Shao, H., Cao, Q., He, M. X., Wu, B. and Feng, H. 2015. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 99, 2009. https://doi.org/10.1007/s00253-014-6342-y
  62. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M. and Picataggio, S. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240-243. https://doi.org/10.1126/science.267.5195.240
  63. Zhang, X., Wang, T., Zhou, W., Jia, X. and Wang, H. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb. Cell Fact. 12, 41-41. https://doi.org/10.1186/1475-2859-12-41
  64. Zhao, N., Bai, Y., Liu, C. G., Zhao, X. Q., Xu, J. F. and Bai, F. W. 2014. Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol. J. 9, 362-371. https://doi.org/10.1002/biot.201300367
  65. Zhao, N., Bai, Y., Zhao, X. Q., Yang, Z. Y. and Bai, F. W. 2012. Draft genome sequence of the flocculating Zymomonas mobilis strain ZM401 (ATCC 31822). J. Bacteriol. 194, 7008-7009. https://doi.org/10.1128/JB.01947-12
  66. Zhao, N., Pan, Y., Liu, H. and Cheng, Z. 2016. Draft Genome Sequence of Zymomonas mobilis ZM481 (ATCC 31823). Genome Announc. 4, e00193-16.