Fig. 1. Isolation procedure of putative antibacterial compound from D. malabarica stems.
Fig. 2. Antibacterial activity of partitioned fraction (1 mg/ disc) with solvents of D. malabarica stems against S. mutans KCTC3065. a: Methanol as a negative control, b: Methanol extracts from D. malabarica stems as a positive control, c: n-Hexane fraction, d: Chloroform fraction, e: Ethyl acetate fraction, f: n-Butanol fraction, g: Water soluble fraction.
Fig. 3. TLC (A) and TLC-bioautography (B) of n-hexane fraction from Diospyros malabarica stems.
Fig. 4. HPLC chromatogram of hexane fraction from D. malabarica stems (A) and antibacterial activity against S. mutans KCTC3065 of HPLC fraction (1 mg/ml) (B). a: Methanol as a negative control, b: Methanol extracts from D. malabarica stems as a positive control, c: HPLC fraction F1, d: HPLC fraction F2, e: HPLC mobile phase (chloroform ethyl acetate=4:1) a negative control.
Fig. 5. Electrospray ionization–mass spectrometry (ESI-MS) spectrum of D. malabarica stems extract.
Fig. 6. Scanning electron microscopy (SEM) micrographs of Streptococcus mutans KCTC3065 biofilms in the absence (A, B) and presence (C, D) of D. malabarica stems extract (1 mg/ml). Magnification is shown by the bar (1 um). Two different magnifications are shown for each surface; ×5,000 for the upper (A, C) and ×10,000 for the lower images (B, D).
Fig. 7. Effects of Diospyros malabarica stems extract on the genes in relation to the biofilm formation of S. mutans KCTC 3065 by real-time PCR analysis. The genes in relation to the biofilm formation of S. mutans KCTC3065 in the absence and presence of extract of D. malabarica stems. Results are shown as the SD of five replicates. *p<0.05, as compared with control.
Table 1. Oligonucleotides used for real-time PCR in this study
참고문헌
- Bergstorm, J. and Holmberg, B. 1973. The effect of chlorhexidine emulsion on plaque. An infra individual study of local application. Swed. Dent. J. 66, 461-465.
- Budtz-Jorgensen, E. and Loe, H. 1972. Chlorhexidine as a denture disinfectant in the treatment of denture stomatitis. Scand. J. Dent. Res. 80, 457-464.
- Choi, H. J., Kim, N. J. and Kim, D. H. 2000. Hypoglycemic effect of GE974 isolated from Gyrophora esculenta in normal and diabetic mice. Kor. J. Pharmacogn. 31, 268-272.
- Choma, I. M. and Grzelak, E. M. 2010. Bioautography detection in thin-layer chromatography. J. Chromatogr. A. 1218, 2684-2691. https://doi.org/10.1016/j.chroma.2010.12.069
- Costerton, J. W., Stewart, P. S. and Greenberg, E. P. 1999. Bacterial biofilms: A common cause of persistent infections. Science 60, 756-762.
- Davies, A. 1973. The mode of action of chlorhexidine. J. Periodont. Res. 8, 68-75. https://doi.org/10.1111/j.1600-0765.1973.tb02167.x
- Davidson, P. M. and Parish, M. E. 1989. Methods for testing the efficacy of food antimicrobials. Food Technol. 43, 148-152.
- Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R. and Dua, T. K. 2015. Bioautography and its scope in the field of natural product chemistry. J. Pharm. A. 5, 75-84. https://doi.org/10.1016/j.jpha.2014.06.002
- Ebisu, S., Misaki, A., Kato, K. and Kotani, S. 1974. The structure of water-insoluble glucans of cariogenic Streptococcus mutans, formed in the absence and presence of dextranase. Carbohydr. Res. 38, 374-381. https://doi.org/10.1016/S0008-6215(00)82375-7
- Fujiwara, T., Hoshino, T., Ooshima, T. and Hamada, S. 2002. Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148. J. Dent. Res. 81, 109-113. https://doi.org/10.1177/0810109
- Hassan, S., Danishuddin, M., Adil, M., Singh, K., Verma, P. K. and Khan, A. U. 2012. Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans a novel and alternative approach to suppress quorum sensing mechanism. PLoS One 7, e40319. https://doi.org/10.1371/journal.pone.0040319
- Hennessey, T. S. 1973. Some antibacterial properties of chlorhexidine. J. Periodont. Res. 8, 61-67. https://doi.org/10.1111/j.1600-0765.1973.tb02166.x
- Huh, M. K. and Kim, H. J. 2014. Antimicrobial effects of sophorae radix extract against oral microorganism. J. Kor. Soc. Dent. Hyg. 14, 117-122. https://doi.org/10.13065/jksdh.2014.14.01.117
- Iniue, M., Koga, T., Sato, S. and Hamada, S. 1982. Synthesis of adherent insoluble glucan by the concerted action of the two glucosyltransferase components of Streptococcus mutans. FEBS Lett. 143, 101-104. https://doi.org/10.1016/0014-5793(82)80282-2
- Kolenbrander, P. E., Palmer, R. J., Periasamy, S. and Jakubovics, N. S. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8, 471-480. https://doi.org/10.1038/nrmicro2381
- Kim, H. K., Park, H. W., Shin, I. S., Lee, J. H. and Seo, H. W. 2008. The antimicrobial effect of horseradish (Armoracia rusticana) root extracts against Streptococcus mutans isolated from human dental plaque. J. Kor. Acad. Pediatr. Dent. 35, 225-234.
- Kim, H. S., Kwon, H. S., Kim, C. H., Lee, S. W., Sydara, K. and Cho, S. J. 2018. Effects of methanol extracts from Diospyros malabarica stems on growth and biofilm formation of oral bacteria. J. Life Sci. 28, 110-115. https://doi.org/10.5352/JLS.2018.28.1.110
- Kumar, S., Shukla, Y. N., Lavania, U. C., Sharma, A. and Singh, A. K. 1997. Medicinal and aromatic plants: prospects for India. J. Med. Arom. Plant Sci. 19, 361-365.
- Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H. and Shi, W. 2007. Interspecies interactions within oral microbial communities. Microbiol. Mol. Biol. Rev. 71, 653-670. https://doi.org/10.1128/MMBR.00024-07
- Lee, S. Y., Kim, J. G., Bail, B. J., Yang, Y. M., Lee, K. Y., Lee, Y. H. and Kim, M. A. 2009. Antimicrobial effect of essential oils on oral bacteria. J. Kor. Acad. Pediatr. Dent. 36, 1-11.
- Lim, S. H., Seo, J. S. and Yoon, Y. J. 2003. Effect of leafextract from Camellia sinensis and seed-extract from Casia tora on viability of mutans streptococci isolated from the interface between orthodontic brackets and tooth surfaces. Kor. J. Orthod 33, 381-389.
- Marsh, P. D. 2001. Dental plaque as a microbial biofilm. Caries Res. 38, 204-211. https://doi.org/10.1159/000077756
-
Park, S. N., Lim, Y. K., Freire, M. O., Cho, E., Jin, D. and Kook, J. K. 2012. Antimicrobial effect of linalool and
${\alpha}$ -terpineol against periodontopathic and cariogenic bacteria. Anaerobe 18, 369-372. https://doi.org/10.1016/j.anaerobe.2012.04.001 - Paula, V., Modesto, A., Santos, K. R. and Gleiser, R. 2010. Antimicrobial effects of the combination of chlorhexidine and xylitol. Br. Dent. J. 209, 19-23. https://doi.org/10.1038/sj.bdj.2010.579
- Poureslami, H. 2012. The effects of plant extracts on dental plaque and caries. pp. 396-402. In: Contemporary Approach to Dental Caries, Lim, M.Y. (Ed.). Croatia, In Tech.
- Pranjal, S. and Debabrat, B. 2014. Phytochemical analysis and antioxidant activity of Gardenia jasminoides ellis and Diospyros malabarica kostel. Int. J. Pharm. Bio. Sci. 5, 199-204.
- Ramsewak, R. S., Nair, M. G., Stommel, M. and Selanders, L. 2003. In vitro antagonistic activity of monoterpenes and their mixtures against 'toe nail fungus' pathogens. Phytother. Res. 17, 376-379. https://doi.org/10.1002/ptr.1164
- Rode, M. S., Kalaskar, M. G., Gond, N. Y. and Surana, S. J. 2013. Evaluation of anti-diarrheal activity of Diospyros malabarica bark extract. Bangladesh J. Pharmacol. 8, 49-53.
- Rosan, B. and Lamont, R. J. 2000. Dental plaque formation. Microbes Infect. 2, 1599-1607. https://doi.org/10.1016/S1286-4579(00)01316-2
- Schaupp, H. and Wohnaut, H. 1973. Disturbance of taste from oral disinfectants. HNO. 26, 335-341.
- Shin, A. R., Ohk, S. H., Choi, C. H. and Hong, S. J. 2016. Identification and partial purification of antibacterial compounds against Streptococcus mutans from Galla Rhois. J. Kor. Acad. Oral. Health 40, 3-8. https://doi.org/10.11149/jkaoh.2016.40.1.3
- Takenaka, S., Oda, M., Domon, H., Ohsumi, T., Suzuki, Y., Ohshima, H., Yamamoto, H., Terao, Y. and Noiri, Y. 2016. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture. Biochem. Biophys. Res. Commun. 480, 173-179. https://doi.org/10.1016/j.bbrc.2016.10.021
- Wenham, D. G., Davies, R. M. and Cole, J. A. 1981. Insoluble glucan synthesis by mutansucrase as determinant of the cariogenicity of Streptococcus mutans. J. Gen. Microbiol. 127, 407-415.
- Whiley, R. A. and Beighton, D. 1998. Current classification of the oral streptococci. Oral Microbiol. Immunol. 13, 195-216. https://doi.org/10.1111/j.1399-302X.1998.tb00698.x
- Yu, J. H., Lee, D. M. and Lee, S. H. 2016. Destabilizing effect of glycyrrhetinic acid on pre-formed biofilms of Streptococcus mutans. J. Kor. Acad. Oral Health 40, 38-42. https://doi.org/10.11149/jkaoh.2016.40.1.38
- Zhiyan, H., Qian, W., Yuejian, H., Jingping, L., Yuntao, J. and Rui, M. 2012. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents 40, 30-35. https://doi.org/10.1016/j.ijantimicag.2012.03.016
- Zijnge, V., Leeuwen, M. B., Degener, J. E., Abbas, F., Thurnheer, T., Gmur, R. and Harmsen, H. J. 2010. Oral biofilm architecture on natural teeth. PLoS One 5, e9321. https://doi.org/10.1371/journal.pone.0009321