DOI QR코드

DOI QR Code

Implication of High Mobility Group Box 1 (HMGB1) in Multicellular Tumor Spheroid (MTS) Culture-induced Epithelial-mesenchymal Transition

Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할

  • Lee, Su Yeon (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ju, Min Kyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeon, Hyun Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Cho Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Hye Gyeong (Nanobiotechnology Center, Pusan National University) ;
  • Kang, Ho Sung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 이수연 (부산대학교 자연과학대학 분자생물학과) ;
  • 주민경 (부산대학교 자연과학대학 분자생물학과) ;
  • 전현민 (부산대학교 자연과학대학 분자생물학과) ;
  • 김초희 (부산대학교 자연과학대학 분자생물학과) ;
  • 박혜경 (한국나노바이오테크놀러지센터) ;
  • 강호성 (부산대학교 자연과학대학 분자생물학과)
  • Received : 2018.08.31
  • Accepted : 2018.11.16
  • Published : 2019.01.30

Abstract

As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB1)를 extracellular space로 방출하는 것으로 알려져 있다. 방출된 HMGB1은 tumor-promoting cytokine으로 작용함으로써 tumor development 시 inflammation, metabolism 및 metastasis에 기여한다. 본 연구에서 non-invasive breast cancer cells MCF-7이 solid tumor의 in vitro model인 multicellular tumor spheroid (MTS) 배양을 통해 완전한 구형의 MTS를 형성하며 MTS가 성장함에 따라 inner region에 necrosis가 유도됨을 밝혔다. 또한 MCF-7 세포의 MTS 배양은 Snail 의존적으로 epithelial-mesenchymal transition (EMT)를 유도함을 관찰하였다. HMGB1의 cell surface receptors인 RAGE, TLR2, TLR4 발현이 MTS 배양에 의해 증가됨을 발견하였다. RAGE, TLR2, TLR4 를 knockdown한 결과 MTS 성장을 억제할 뿐만 아니라 MTS에 의해 증가되는 Snail 발현을 억제함을 밝혔다. 이는 MTS-induced Snail 발현이 RAGE/TLR2/TLR4의존적으로 조절되며 RAGE/TLR2/TLR4-Snail이 MTS 성장에 관여하는 것으로 보인다. 또한 Snail, RAGE, TLR2, TLR4 shRNA는 MTS 배양에 의해 유도되는 EMT를 억제함을 밝혔다. 실제 인간 암조직에서 정상조직에 비해 RAGE, TLR2, TLR4 유전자의 발현이 높음을 관찰하였다. 따라서 HMGB1이 RAGE/TLR2/4-Snail axis를 통해 MTS 배양에 따른 성장 및 EMT에 중요하게 작용할 것으로 예상된다.

Keywords

SMGHBM_2019_v29n1_9_f0001.png 이미지

Fig. 1. MCF-7 cells acquire the potential to exhibit EMT during MTS culture.

SMGHBM_2019_v29n1_9_f0002.png 이미지

Fig. 2. RAGE/TLR2/4 signaling is involved in MTS culture-induced EMT via Snail activation.

SMGHBM_2019_v29n1_9_f0003.png 이미지

Fig. 3. The expression of RAGE, and TLR2/4 in human tumors.

Table 1. shRNA target sequences used in this paper

SMGHBM_2019_v29n1_9_t0001.png 이미지

Table 2. Primer sequences used in this study

SMGHBM_2019_v29n1_9_t0002.png 이미지

References

  1. Bald, T., Quast, T., Landsberg, J., Rogava, M., Glodde, N., Lopez-Ramos, D., Kohlmeyer, J., Riesenberg, S., van den Boorn-Konijnenberg, D., Homig-Holzel, C., Reuten, R., Schadow, B., Weighardt, H., Wenzel, D., Helfrich, I., Schadendorf, D., Bloch, W., Bianchi, M. E., Lugassy, C., Barnhill, R. L., Koch, M., Fleischmann, B. K., Forster, I., Kastenmuller, W., Kolanus, W., Holzel, M., Gaffal, E. and Tuting, T. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507, 109-113. https://doi.org/10.1038/nature13111
  2. Chen, R. C., Yi, P. P., Zhou, R. R., Xiao, M. F., Huang, Z. B., Tang, D. L., Huang, Y. and Fan, X. G. 2014. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol. Cell. Biochem. 390, 271-280. https://doi.org/10.1007/s11010-014-1978-6
  3. Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., Calogero, R. A. and Cavallo, F. 2013. The noninflammatory role of high mobility group box 1/Tolllike receptor 2 axis in the self-renewal of mammary cancer stem cells. FASEB J. 27, 4731-4744. https://doi.org/10.1096/fj.13-230201
  4. Dang, C. V., Kim, J. W., Gao, P. and Yustein, J. 2008. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51-56. https://doi.org/10.1038/nrc2274
  5. De Craene, B. and Berx, G. 2013. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97-110. https://doi.org/10.1038/nrc3447
  6. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. 2008. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  7. Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D. A., Jin, S. and White, E. 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64. https://doi.org/10.1016/j.ccr.2006.06.001
  8. Denko, N. C. 2008. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705-713. https://doi.org/10.1038/nrc2468
  9. Edinger, A. L. and Thompson, C. B. 2004. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
  10. Fukata, M., Chen, A., Vamadevan, A. S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A. J., Subbaramaiah, K., Cooper, H. S., Itzkowitz, S. H. and Abreu, M. T. 2007. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869-1881. https://doi.org/10.1053/j.gastro.2007.09.008
  11. Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V. and Semenza, G. L. 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122. https://doi.org/10.1016/j.cell.2007.01.047
  12. Gatenby, R. A. and Gillies, R. J. 2004. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899. https://doi.org/10.1038/nrc1478
  13. Golstein, P. and Kroemer, G. 2007. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37-43. https://doi.org/10.1016/j.tibs.2006.11.001
  14. Guo, Z. S., Liu, Z., Bartlett, D. L., Tang, D. and Lotze, M. T. 2013. Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am. J. Cancer Res. 3, 1-20.
  15. He, M., Kubo, H., Ishizawa, K., Hegab, A. E., Yamamoto, Y., Yamamoto, H. and Yamaya, M. 2007. The role of the receptor for advanced glycation end-products in lung fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L1427-1436. https://doi.org/10.1152/ajplung.00075.2007
  16. Hielscher, A. and Gerecht, S. 2015. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic. Biol. Med. 79, 281-291. https://doi.org/10.1016/j.freeradbiomed.2014.09.015
  17. Horning, J. L., Sahoo, S. K., Vijayaraghavalu, S., Dimitrijevic, S., Vasir, J. K., Jain, T. K., Panda, A. K. and Labhasetwar, V. 2008. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol. Pharm. 5, 849-862. https://doi.org/10.1021/mp800047v
  18. Hsu, P. P. and Sabatini, D. M. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134, 703-707. https://doi.org/10.1016/j.cell.2008.08.021
  19. Hua, D., Liu, M. Y., Cheng, Z. D., Qin, X. J., Zhang, H. M., Chen, Y., Qin, G. J., Liang, G., Li, J. N., Han, X. F. and Liu, D. X. 2009. Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol. Immunol. 46, 2876-2884. https://doi.org/10.1016/j.molimm.2009.06.016
  20. Ivascu, A. and Kubbies, M. 2007. Diversity of cell-mediated adhesions in breast cancer spheroids. Int. J. Oncol. 31, 1403-1413.
  21. Kang, R., Tang, D., Schapiro, N. E., Livesey, K. M., Farkas, A., Loughran, P., Bierhaus, A., Lotze, M. T. and Zeh, H. J. 2010. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17, 666-676. https://doi.org/10.1038/cdd.2009.149
  22. Kang, R., Tang, D., Schapiro, N. E., Loux, T., Livesey, K. M., Billiar, T. R., Wang, H., Van Houten, B., Lotze, M. T. and Zeh, H. J. 2014. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 33, 567-577. https://doi.org/10.1038/onc.2012.631
  23. Kang, R., Zhang, Q., Zeh, H. J. 3rd., Lotze, M. T. and Tang, D. 2013. HMGB1 in cancer: good, bad, or both? Clin. Cancer Res. 19, 4046-4057. https://doi.org/10.1158/1078-0432.CCR-13-0495
  24. Kim, C. H., Jeon, H. M., Lee, S. Y., Ju, M. K., Moon, J. Y., Park, H. G., Yoo, M. A., Choi, B. T., Yook, J. I., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Implication of snail in metabolic stress-induced necrosis. PLoS One 6, e18000. https://doi.org/10.1371/journal.pone.0018000
  25. Kim, J. W., Tchernyshyov, I., Semenza, G. L. and Dang, C. V. 2006. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177-185. https://doi.org/10.1016/j.cmet.2006.02.002
  26. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., Luo, J. L. and Karin, M. 2009. Carcinomaproduced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102-106. https://doi.org/10.1038/nature07623
  27. Kondo, Y., Kanzawa, T., Sawaya, R. and Kondo, S. 2005. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 5, 726-734. https://doi.org/10.1038/nrc1692
  28. Kunjithapatham, R., Karthikeyan, S., Geschwind, J. F., Kieserman, E., Lin, M., Fu, D. X. and Ganapathy-Kanniappan, S. 2014. Reversal of anchorage-independent multicellular spheroid into a monolayer mimics a metastatic model. Sci. Rep. 4, 6816. https://doi.org/10.1038/srep06816
  29. Lamouille, S., Xu, J. and Derynck, R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196. https://doi.org/10.1038/nrm3758
  30. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
  31. Lee, S. Y., Jeon, H. M., Kim, C. H., Ju, M. K., Bae, H. S., Park, H. G., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol. Cancer 10, 113. https://doi.org/10.1186/1476-4598-10-113
  32. Lee, S. Y., Ju, M. K., Jeon, H. M., Jeong, E. K., Lee, Y. J., Kim, C. H., Park, H. G., Han, S. I. and Kang, H. S. 2018. Regulation of Tumor Progression by Programmed Necrosis. Oxid. Med. Cell. Longev. 2018, 3537471.
  33. Liu, A., Fang, H., Dirsch, O., Jin, H. and Dahmen, U. 2012. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One 7, e35379. https://doi.org/10.1371/journal.pone.0035379
  34. Lotze, M. T. and Tracey, K. J. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331-342. https://doi.org/10.1038/nri1594
  35. Lynch, J., Nolan, S., Slattery, C., Feighery, R., Ryan, M. P. and McMorrow, T. 2010. High-mobility group box protein 1: a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition. Am. J. Nephrol. 32, 590-602. https://doi.org/10.1159/000320485
  36. Marin-Hernandez, A., Gallardo-Perez, J. C., Hernandez-Resendiz, I., Del Mazo-Monsalvo, I., Robledo-Cadena, D. X., Moreno-Sanchez, R. and Rodriguez-Enriquez, S. 2016. Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic HeLa cell cultures and microspheroids. J. Cell. Physiol. 232, 1346-1359. https://doi.org/10.1002/jcp.25617
  37. Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F. and Hwang, P. M. 2006. p53 regulates mitochondrial respiration. Science 312, 1650-1653. https://doi.org/10.1126/science.1126863
  38. Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., Cossu, G. and Bianchi, M. E. 2004. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J. Cell Biol. 164, 441-449. https://doi.org/10.1083/jcb.200304135
  39. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. and Denko, N. C. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
  40. Rouhiainen, A., Kuja-Panula, J., Tumova, S. and Rauvala, H. 2013. RAGE-mediated cell signaling. Methods Mol. Biol. 963, 239-263. https://doi.org/10.1007/978-1-62703-230-8_15
  41. Sabharwal, S. S. and Schumacker, P. T. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709-721. https://doi.org/10.1038/nrc3803
  42. Scaffidi, P., Misteli, T. and Bianchi, M. E. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195. https://doi.org/10.1038/nature00858
  43. Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. and Coyle, A. J. 2010. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367-388. https://doi.org/10.1146/annurev.immunol.021908.132603
  44. Taguchi, A., Blood, D. C., del Toro, G., Canet, A., Lee, D. C., Qu, W., Tanji, N., Lu, Y., Lalla, E., Fu, C., Hofmann, M. A., Kislinger, T., Ingram, M., Lu, A., Tanaka, H., Hori, O., Ogawa, S., Stern, D. M. and Schmidt, A. M. 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354-360. https://doi.org/10.1038/35012626
  45. Thiery, J. P. and Sleeman, J. P. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142. https://doi.org/10.1038/nrm1835
  46. Tsai, J. H. and Yang, J. 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27, 2192-2206. https://doi.org/10.1101/gad.225334.113
  47. Tye, H., Kennedy, C. L., Najdovska, M., McLeod, L., Mc Cormack, W., Hughes, N., Dev, A., Sievert, W., Ooi, C. H., Ishikawa, T. O., Oshima, H., Bhathal, P. S., Parker, A. E., Oshima, M., Tan, P. and Jenkins, B. J. 2012. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22, 466-478. https://doi.org/10.1016/j.ccr.2012.08.010
  48. Vakkila, J. and Lotze, M. T. 2004. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641-648. https://doi.org/10.1038/nri1415
  49. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  50. Yan, W., Chang, Y., Liang, X., Cardinal, J. S., Huang, H., Thorne, S. H., Monga, S. P., Geller, D. A., Lotze, M. T. and Tsung, A. 2012. High-mobility group box 1 activates caspase- 1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863-1875. https://doi.org/10.1002/hep.25572
  51. Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., Tang, L., Tan, Y. X., Cao, D., Wu, M. C., Yan, H. X. and Wang, H. Y. 2014. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256. https://doi.org/10.1038/ncomms6256
  52. Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K. I., Dang, C. V. and Semenza, G. L. 2007. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407-420. https://doi.org/10.1016/j.ccr.2007.04.001
  53. Zhu, L., Li, X., Chen, Y., Fang, J. and Ge, Z. 2015. High-mobility group box 1: a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett. 357, 527-534. https://doi.org/10.1016/j.canlet.2014.12.012
  54. Zong, W. X. and Thompson, C. B. 2006. Necrotic death as a cell fate. Genes Dev. 20, 1-15. https://doi.org/10.1101/gad.1376506