Fig. 1. Experimental design.
Fig. 2. A. Body weight change during the total experiment period in the total group. B. Body weight change during the induction of obesity phase in the normal diet-fed group and high-fat diet-fed group. C. Body weight change during the intervention phase in the exercised group. D. Food efficiency ratio.
Fig. 3. Western blot showing nNOS protein in the hippocampus (A), cerebral cortex (B), and cerebellum (C) of all groups (1:CON; 2:HFD; 3:HFD-LI; 4;HFD-MI; 5:HFD-HI).
Fig. 4. nNOS gene expression levels in the cerebral cortex (A) and cerebellum (B) of all groups.
Fig. 5. Western blot showing pAktSer473 protein in the hippocampus (A), cerebral cortex (B), and cerebellum (C) of all groups (1:CON; 2:HFD; 3:HFD-LI; 4;HFD-MI; 5:HFD-HI).
References
- Abbott, L. C. and Nahm, S. S. 2004. Neuronal nitric oxide synthase expression in cerebellar mutant mice. Cerebellum 3, 141-151. https://doi.org/10.1080/14734220410031927
- Abel, E. D., Peroni, O., Kim, J. K., Kim, Y. B., Boss, O., Hadro, E., Minnemann, T., Shulman, G. I. and Kahn, B. B. 2001. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729-733. https://doi.org/10.1038/35055575
- Akgoren, N., Fabricius, M. and Lauritzen, M. 1994. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc. Natl. Acad. Sci. USA. 91, 5903-5907. https://doi.org/10.1073/pnas.91.13.5903
- Anaeigoudari, A., Soukhtanloo, M., Shafei, M. N., Sadeghnia, H. R., Reisi, P., Beheshti, F., Behradnia, S., Mousavi, S. M. and Hosseini, M. 2016. Neuronal nitric oxide synthase has a role in the detrimental effects of lipopolysaccharide on spatial memory and synaptic plasticity in rats. Pharmacol. Rep. 68, 243-249. https://doi.org/10.1016/j.pharep.2015.09.004
- Baek, K. W. 2018. Effects of a single of bout exercise on the macrophage phenotypic ratio in the adipose tissue of high-fat diet-induced obese mice. Exerc. Sci. 27, 12.
- Baek, K. W., Cha, H. J., Ock, M. S., Kim, H. S., Gim, J. A. and Park, J. J. 2018. Effects of regular-moderate exercise on high-fat diet-induced intramyocellular lipid accumulation in the soleus muscle of Sprague-Dawley rats. J. Exerc. Rehabil. 14, 32-38. https://doi.org/10.12965/jer.1835166.583
- Billat, V. L., Mouisel, E., Roblot, N. and Melki, J. 2005. Interand intrastrain variation in mouse critical running speed. J. Appl. Physiol. (1985) 98, 1258-1263. https://doi.org/10.1152/japplphysiol.00991.2004
- Blair, S. N., Horton, E., Leon, A. S., Lee, I. M., Drinkwater, B. L., Dishman, R. K., Mackey, M. and Kienholz, M. L. 1996. Physical activity, nutrition, and chronic disease. Med. Sci. Sports Exerc. 28, 335-349. https://doi.org/10.1097/00005768-199603000-00009
- Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M. and Snyder, S. H. 1991. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7, 615-624. https://doi.org/10.1016/0896-6273(91)90374-9
- Bredt, D. S. and Snyder, S. H. 1992. Nitric oxide, a novel neuronal messenger. Neuron 8, 3-11. https://doi.org/10.1016/0896-6273(92)90104-L
- Bredt, D. S. and Snyder, S. H. 1994. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13, 301-313. https://doi.org/10.1016/0896-6273(94)90348-4
- Camer, D., Yu, Y., Szabo, A., Fernandez, F., Dinh, C. H. L. and Huang, X. F. 2015. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 59, 68-75. https://doi.org/10.1016/j.pnpbp.2015.01.004
- Canabal, D. D., Song, Z., Potian, J. G., Beuve, A., McArdle, J. J. and Routh, V. H. 2007. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose- inhibited neurons in the ventromedial hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1418-1428. https://doi.org/10.1152/ajpregu.00216.2006
- Chalimoniuk, M., Chrapusta, S. J., Lukacova, N. and Langfort, J. 2015. Endurance training upregulates the nitric oxide/soluble guanylyl cyclase/cyclic guanosine 3',5'-monophosphate pathway in the striatum, midbrain and cerebellum of male rats. Brain Res. 1618, 29-40. https://doi.org/10.1016/j.brainres.2015.05.020
- Chen, M. J., Ivy, A. S. and Russo-Neustadt, A. A. 2006. Nitric oxide synthesis is required for exercise-induced increases in hippocampal BDNF and phosphatidylinositol 3' kinase expression. Brain Res. Bull. 68, 257-268. https://doi.org/10.1016/j.brainresbull.2005.08.013
- Cherbuin, N., Sargent-Cox, K., Fraser, M., Sachdev, P. and Anstey, K. J. 2015. Being overweight is associated with hippocampal atrophy: the PATH Through Life Study. Int. J. Obes (Lond). 39, 1509-1514. https://doi.org/10.1038/ijo.2015.106
- Dunn, R. W., Reed, T. A., Copeland, P. D. and Frye, C. A. 1998. The nitric oxide synthase inhibitor 7-nitroindazole displays enhanced anxiolytic efficacy without tolerance in rats following subchronic administration. Neuropharmacology 37, 899-904. https://doi.org/10.1016/S0028-3908(98)00076-8
- Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA. 108, 3017-3022. https://doi.org/10.1073/pnas.1015950108
- Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A. and Sessa, W. C. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601. https://doi.org/10.1038/21218
- Gammie, S. C., Olaghere-da Silva, U. B. and Nelson, R. J. 2000. 3-bromo-7-nitroindazole, a neuronal nitric oxide synthase inhibitor, impairs maternal aggression and citrulline immunoreactivity in prairie voles. Brain. Res. 870, 80-86. https://doi.org/10.1016/S0006-8993(00)02404-5
- Gleeson, M. 2007. Immune function in sport and exercise. J. Appl. Physiol. 103, 693-699. https://doi.org/10.1152/japplphysiol.00008.2007
- Jacka, F. N., Cherbuin, N., Anstey, K. J., Sachdev, P. and Butterworth, P. 2015. Western diet is associated with a smaller hippocampus: a longitudinal investigation. BMC. Med. 13, 215. https://doi.org/10.1186/s12916-015-0461-x
- Jacka, F. N., Pasco, J. A., Mykletun, A., Williams, L. J., Hodge, A. M., O'Reilly, S. L., Nicholson, G. C., Kotowicz, M. A. and Berk, M. 2010. Association of Western and traditional diets with depression and anxiety in women. Am. J. Psychiatry 167, 305-311. https://doi.org/10.1176/appi.ajp.2009.09060881
- Joca, S. R. and Guimaraes, F. S. 2006. Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl) 185, 298-305. https://doi.org/10.1007/s00213-006-0326-2
- Kasamatsu, S., Watanabe, Y., Sawa, T., Akaike, T. and Ihara, H. 2014. Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem. J. 459, 251-263. https://doi.org/10.1042/BJ20131262
- Kawanishi, N., Yano, H., Yokogawa, Y. and Suzuki, K. 2010. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105-118.
- Kempen, K. P., Saris, W. H. and Westerterp, K. R. 1995. Energy balance during an 8-wk energy-restricted diet with and without exercise in obese women. Am. J. Clin. Nutr. 62, 722-729. https://doi.org/10.1093/ajcn/62.4.722
- Kobilo, T., Liu, Q. R., Gandhi, K., Mughal, M., Shaham, Y. and van Praag, H. 2011. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn. Mem. 18, 605-609. https://doi.org/10.1101/lm.2283011
- Krass, M., Runkorg, K., Wegener, G. and Volke, V. 2010. Nitric oxide is involved in the regulation of marble-burying behavior. Neurosci. Lett. 480, 55-58. https://doi.org/10.1016/j.neulet.2010.06.002
- Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P. and Erlanson-Albertsson, C. 2006. High-fat diet impairs hippocampal neurogenesis in male rats. Eur. J. Neurol. 13, 1385-1388. https://doi.org/10.1111/j.1468-1331.2006.01500.x
- Liu, Y., Fu, X., Lan, N., Li, S., Zhang, J., Wang, S., Li, C., Shang, Y., Huang, T. and Zhang, L. 2014. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 267, 178-188. https://doi.org/10.1016/j.bbr.2014.02.040
- Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
- Mayer, B., John, M. and Bohme, E. 1990. Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. Cofactor-role of tetrahydrobiopterin. FEBS Lett. 277, 215-219. https://doi.org/10.1016/0014-5793(90)80848-D
- Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K. and Gomez-Pinilla, F. 2002. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803-814. https://doi.org/10.1016/S0306-4522(02)00123-9
- Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., Abraham, J. P., Abu-Rmeileh, N. M., Achoki, T., AlBuhairan, F. S., Alemu, Z. A., Alfonso, R., Ali, M. K., Ali, R., Guzman, N. A., Ammar, W., Anwari, P., Banerjee, A., Barquera, S., Basu, S., Bennett, D. A., Bhutta, Z., Blore, J., Cabral, N., Nonato, I. C., Chang, J. C., Chowdhury, R., Courville, K. J., Criqui, M. H., Cundiff, D. K., Dabhadkar, K. C., Dandona, L., Davis, A., Dayama, A., Dharmaratne, S. D., Ding, E. L., Durrani, A. M., Esteghamati, A., Farzadfar, F., Fay, D. F., Feigin, V. L., Flaxman, A., Forouzanfar, M. H., Goto, A., Green, M. A., Gupta, R., Hafezi-Nejad, N., Hankey, G. J., Harewood, H. C., Havmoeller, R., Hay, S., Hernandez, L., Husseini, A., Idrisov, B. T., Ikeda, N., Islami, F., Jahangir, E., Jassal, S. K., Jee, S. H., Jeffreys, M., Jonas, J. B., Kabagambe, E. K., Khalifa, S. E., Kengne, A. P., Khader, Y. S., Khang, Y. H., Kim, D., Kimokoti, R. W., Kinge, J. M., Kokubo, Y., Kosen, S., Kwan, G., Lai, T., Leinsalu, M., Li, Y., Liang, X., Liu, S., Logroscino, G., Lotufo, P. A., Lu, Y., Ma, J., Mainoo, N. K., Mensah, G. A., Merriman, T. R., Mokdad, A. H., Moschandreas, J., Naghavi, M., Naheed, A., Nand, D., Narayan, K. M., Nelson, E. L., Neuhouser, M. L., Nisar, M. I., Ohkubo, T., Oti, S. O., Pedroza, A., Prabhakaran, D., Roy, N., Sampson, U., Seo, H., Sepanlou, S. G., Shibuya, K., Shiri, R., Shiue, I., Singh, G. M., Singh, J. A., Skirbekk, V., Stapelberg, N. J., Sturua, L., Sykes, B. L., Tobias, M., Tran, B. X., Trasande, L., Toyoshima, H., van de Vijver, S., Vasankari, T. J., Veerman, J. L., Velasquez- Melendez, G., Vlassov, V. V., Vollset, S. E., Vos, T., Wang, C., Wang, X., Weiderpass, E., Werdecker, A., Wright, J. L., Yang, Y. C., Yatsuya, H., Yoon, J., Yoon, S. J., Zhao, Y., Zhou, M., Zhu, S., Lopez, A. D., Murray, C. J. and Gakidou, E. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8
- Nieman, D. C. 1994. Exercise, infection, and immunity. Int. J. Sports Med. 15 Suppl 3, S131-141. https://doi.org/10.1055/s-2007-1021128
- Oliveira, A. G., Araujo, T. G., Carvalho, B. M., Guadagnini, D., Rocha, G. Z., Bagarolli, R. A., Carvalheira, J. B. and Saad, M. J. 2013. Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity (Silver Spring) 21, 2545-2556. https://doi.org/10.1002/oby.20402
- Park, C., Shin, K. S., Ryu, J. H., Kang, K., Kim, J., Ahn, H. and Huh, Y. 2004. The inhibition of nitric oxide synthase enhances PSA-NCAM expression and CREB phosphorylation in the rat hippocampus. Neuroreport 15, 231-234. https://doi.org/10.1097/00001756-200402090-00003
- Park, H. R., Park, M., Choi, J., Park, K. Y., Chung, H. Y. and Lee, J. 2010. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci. Lett. 482, 235-239. https://doi.org/10.1016/j.neulet.2010.07.046
- Pedersen, B. K. and Saltin, B. 2006. Evidence for prescribing exercise as therapy in chronic disease. Scand. J. Med. Sci. Sports 16 Suppl 1, 3-63. https://doi.org/10.1111/j.1600-0838.2006.00520.x
- Racette, S. B., Schoeller, D. A., Kushner, R. F., Neil, K. M. and Herling-Iaffaldano, K. 1995. Effects of aerobic exercise and dietary carbohydrate on energy expenditure and body composition during weight reduction in obese women. Am. J. Clin. Nutr. 61, 486-494. https://doi.org/10.1093/ajcn/61.3.486
- Ropelle, E. R., Flores, M. B., Cintra, D. E., Rocha, G. Z., Pauli, J. R., Morari, J., de Souza, C. T., Moraes, J. C., Prada, P. O., Guadagnini, D., Marin, R. M., Oliveira, A. G., Augusto, T. M., Carvalho, H. F., Velloso, L. A., Saad, M. J. and Carvalheira, J. B. 2010. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS. Biol. 8, e1000465. https://doi.org/10.1371/journal.pbio.1000465
- Soya, H., Nakamura, T., Deocaris, C. C., Kimpara, A., Iimura, M., Fujikawa, T., Chang, H., McEwen, B. S. and Nishijima, T. 2007. BDNF induction with mild exercise in the rat hippocampus. Biochem. Biophys. Res. Commun. 358, 961-967. https://doi.org/10.1016/j.bbrc.2007.04.173
- Tomiga, Y., Ito, A., Sudo, M., Ando, S., Maruyama, A., Nakashima, S., Kawanaka, K., Uehara, Y., Kiyonaga, A., Tanaka, H. and Higaki, Y. 2016. Effects of environmental enrichment in aged mice on anxiety-like behaviors and neuronal nitric oxide synthase expression in the brain. Biochem. Biophys. Res. Commun. 476, 635-640. https://doi.org/10.1016/j.bbrc.2016.06.010
- Tomiga, Y., Yoshimura, S., Ito, A., Nakashima, S., Kawanaka, K., Uehara, Y., Tanaka, H. and Higaki, Y. 2017. Exercise training rescues high fat diet-induced neuronal nitric oxide synthase expression in the hippocampus and cerebral cortex of mice. Nitric Oxide 66, 71-77. https://doi.org/10.1016/j.niox.2017.03.002
- Velthuis-te Wierik, E. J., Westerterp, K. R. and van den Berg, H. 1995. Impact of a moderately energy-restricted diet on energy metabolism and body composition in non-obese men. Int. J. Obes. Relat. Metab. Disord. 19, 318-324.
- Volke, V., Wegener, G., Bourin, M. and Vasar, E. 2003. Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav. Brain Res. 140, 141-147. https://doi.org/10.1016/S0166-4328(02)00312-1
- Wultsch, T., Chourbaji, S., Fritzen, S., Kittel, S., Grunblatt, E., Gerlach, M., Gutknecht, L., Chizat, F., Golfier, G., Schmitt, A., Gass, P., Lesch, K. P. and Reif, A. 2007. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. J. Neural. Transm. Suppl. 2007, 69-85.
- Zhang, J., Huang, X. Y., Ye, M. L., Luo, C. X., Wu, H. Y., Hu, Y., Zhou, Q. G., Wu, D. L., Zhu, L. J. and Zhu, D. Y. 2010. Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J. Neurosci. 30, 2433-2441. https://doi.org/10.1523/JNEUROSCI.5880-09.2010
- Zhou, Q. G., Hu, Y., Hua, Y., Hu, M., Luo, C. X., Han, X., Zhu, X. J., Wang, B., Xu, J. S. and Zhu, D. Y. 2007. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J. Neurochem. 103, 1843-1854. https://doi.org/10.1111/j.1471-4159.2007.04914.x