Fig. 1. 3D porous foam-based TENG. (a) A schematic illustration of a TENG structure and a representative SEM image of 3D Ni foam. (b-d) The construction process of a vertically stacked TENG using PMMA sheets connected with struts and springs, a 3D porous foam, and a sheet of flat PDMS
Fig. 3. Electrical measurements of the Ni foam-based TENG in vertical contact-separation mode. (a) The open-circuit voltage and (b) the short-circuit current by the repetitive periodic contact-separation. (c) Dependence of the output voltage and current with the increased load resistance. (d) Load resistance versus power peak value of the nanogenerator.
Fig. 4. Electrical performance of Cu and Pu foam-based TENGs. (a) The optical microscope image of the surface of Cu foam (left). The open-circuit voltage and the short-circuit current density were ~80 V and ~1.5 μA, respectively (middle-right). (b) The optical microscope image of the surface of PU foam (left). The open-circuit voltage and the short-circuit current density were ~42 V and ~0.2 μA, respectively (middle-right).
Fig. 2. Schematics of operating principle of a 3D foam-based TENG. (a) Initial state where the external load is not applied and separated with an optimum distance, dn. (b) When the 3D porous foam is brought into contact with the PDMS sheet by the external load, the triboelectric charge can be generated on each surface of the two materials to balance the surface charge. (c) A potential difference is generated by the separation of the two materials, and the electrons can be induced to the upper electrode. (d) When the two surfaces are fully separated, the surface charge accumulates and equilibrates. (e) By the sequential engagement of the external load, the electrons can be inversely induced to the lower electrode.
참고문헌
- A. C. Wang, C. Wu, D. Pisignano, Z. L. Wang, and L. Persano, "Polymer nanogenerators: Opportunities and Challenges for Large-Scale Applications", J. Appl. Polym. Sci., 135(24), 45674 (2017). https://doi.org/10.1002/app.45674
- Y. Yao, T. Jiang, L. Zhang, X. Chen, Z. Gao, and Z. L. Wang, "Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage", ACS Appl. Mater. Interfaces, 8(33), 21398 (2016). https://doi.org/10.1021/acsami.6b07697
- D.-M. Shin, E. L. Tsege, S. H. Kang, W. Seung, S.-W. Kim, H. K. Kim, S. W. Hong, and Y.-H. Hwang, "Freestanding ZnO Nanorod/graphene/ZnO Nanorod Epitaxial Double Heterostructure for Improved Piezoelectric Nanogenerators", 12, 268 (2015). https://doi.org/10.1016/j.nanoen.2014.12.040
- M. Xu, Y.-C. Wang, S. L. Zhang, W. Ding, J. Cheng, X. He, P. Zhang, Z. Wang, X. Pan, and Z. L. Wang, "An Aeroelastic Flutter Based Triboelectric Nanogenerator as a Self-Powered Active Wind Speed Sensor in Harsh Environment", Extreme Mech. Lett., 15, 122 (2017). https://doi.org/10.1016/j.eml.2017.07.005
- X. Cao, Y. Jie, N. Wang, and Z. L. Wang, "Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science", Adv. Energy Mater., 6(23), 1600665 (2016). https://doi.org/10.1002/aenm.201600665
- Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu, and Z. L. Wang, "Grating-Structured Freestanding Triboelectric-Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency", Adv. Mater., 26(38), 6599 (2014). https://doi.org/10.1002/adma.201402428
- G. Zhu, J. Chen, T. Zhang, Q. Jing, and Z. L. Wang, "Radial-arrayed Rotary Electrification for High Performance Triboelectric Generator", Nat. Commun., 5, 3426 (2014). https://doi.org/10.1038/ncomms4426
- Q. Jing, Y. Xie, G. Zhu, R. P.S. Han, and Z. L. Wang, "Self-powered Thin-Film Motion Vector Sensor", Nat. Commun., 6, 8031 (2015). https://doi.org/10.1038/ncomms9031
- C. He, W. Zhu, B. Chen, L. Xu, T. Jiang, C. B. Han, G. Q. Gu, D. Li, and Z. L. Wang, "Smart Floor with Integrated Triboelectric Nanogenerator as Energy Harvester and Motion Sensor", ACS Appl. Mater. Interfaces, 9(31), 26126 (2017). https://doi.org/10.1021/acsami.7b08526
- T. S. Oh, "Fabrication Process and Power Generation Characteristics of Thermoelectric Thin Film Devices for Micro Energy Harvesting", J. Microelectron. Packag. Soc., 25(3), 67 (2018). https://doi.org/10.6117/KMEPS.2018.25.3.067
- D.-H. Lee, S.-I. Kim, Y.-H. Kim, Y.-T. Kim, M.-C. Park, C.-W. Lee, and C.-W. Baek, "Characterization of a Micro Power Generator using a Fabricated Electroplated Coil", J. Microelectron. Packag. Soc., 13(3), 9 (2006).
- T. Kim, S. Jeon, S. Lone, S. J. Doh, D.-M. Shin, H. K. Kim, Y.-H. Hwang, and S W. Hong, "Versatile Nanodot-Patterned Gore-Tex Fabric for Multiple Energy Harvesting in Wearable and Aerodynamic Nanogenerators", Nano Energy, 54, 209 (2018). https://doi.org/10.1016/j.nanoen.2018.09.067
- G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, and Z. L. Wang. "Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator", Nano Lett., 13(2), 847 (2013). https://doi.org/10.1021/nl4001053
- K. Y. Lee, M. K. Gupta, and S.-W. Kim, "Transparent Flexible Stretchable Piezoelectric and Triboelectric Nanogenerators for Powering Portable Electronics", Nano Energy, 14, 139 (2015). https://doi.org/10.1016/j.nanoen.2014.11.009
- H. Phan, D.-M. Shin, S. H. Jeon, T. Y. Kang, P. Han, G. H. Kim, H. K. Kim, K. Kim, Y.-H. Hwang, and S. W. Hong, "Aerodynamic and Aeroelastic Flutters Driven Triboelectric Nanogenerators for Harvesting Broadband Airflow Energy", Nano Energy, 33, 476 (2017). https://doi.org/10.1016/j.nanoen.2017.02.005
- S. H. Kang, and S. W. Hong, "Recent Progress in Flexible/Wearable Electronics", Journal of KWJS, 32(3), 34 (2014).
- Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors", Energy Environ. Sci., 8, 2250 (2015). https://doi.org/10.1039/C5EE01532D
- L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, and Z. L. Wang, "Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging", ACS Nano, 7(9), 826 (2013).
- Y.-C. Lai, J. Deng, S. Niu, W. Peng, C. Wu, R. Liu, Z. Wen, and Z. L. Wang, "Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications", Adv. Mater., 28(45), 10024 (2016). https://doi.org/10.1002/adma.201603527
- V. L. Trinh, and C. K. Chung, "Harvesting mechanical energy, storage, and lighting using a novel PDMS based triboelectric generator with inclined wall arrays and micro-topping structure", Applied Energy, 213, 353 (2018). https://doi.org/10.1016/j.apenergy.2018.01.039
- L. Zhang, L. Jin, B. Zhang, W. Deng, H. Pan, J. Tang, M. Zhu, and W. Yang, "Multifunctional Triboelectric Nanogenerator based on Porous Micro-Nickel Foam to Harvest Mechanical Energy", Nano Energy, 16, 516 (2015). https://doi.org/10.1016/j.nanoen.2015.06.012
- Z. L. Wang, "Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors", ACS Nano, 7(11), 9533 (2013). https://doi.org/10.1021/nn404614z
- Z. L. Wang, "Nanogenerators, Self-powered Systems, Blue Energy, Piezotronics and Piezophototronics-A Recall on the Original Thoughts for Coining These Fields", Nano Energy, 54, 477 (2018). https://doi.org/10.1016/j.nanoen.2018.09.068