DOI QR코드

DOI QR Code

전해 Cr/Ni-P 도금막의 열 사이클 신뢰성 및 균열거동 분석

Thermal Cycle Reliabilties and Cracking Characteristics of Electroplated Cr/Ni-P Coatings

  • 이진아 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 손기락 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 이규환 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Lee, Jina (School of Materials Science and Engineering, Andong National University) ;
  • Son, Kirak (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Kyu Hwan (Surface Technology Division, Korea Institute of Materials Science) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 투고 : 2019.12.06
  • 심사 : 2019.12.29
  • 발행 : 2019.12.30

초록

열 사이클 조건이 전해 Cr/Ni-P 이중도금 시편의 접합강도 및 균열성장거동에 미치는 영향을 분석하였다. 전해 Ni-P 도금층을 열처리를 통해 결정화 시킨 후 전해 Cr 도금 후 한번 더 열처리한 결과, Cr/Ni-P 계면에서 상호확산으로 인해 Cr-Ni 고용체 band layer가 관찰되었다. 열 사이클 전 접합강도는 25.6 MPa이였으나, 1,000사이클 후 Cr 도금층의 균열 밀도 및 표면 거칠기 증가로 인해 도금층과 접착제 사이의 기계적 고착효과가 향상되어 접착제와 Cr 도금층 사이에서 박리되었고, 접합강도는 47.6 MPa로 점차적으로 증가하였다.

The effects of thermal cycle conditions on the bonding strength and crack propagation behaviors in electroplated Cr/electroplated Ni-P coatings were systematically evaluated. 1st heat treatment was performed at 500℃ for 3 hours after electroplating Ni-P, and then, 2nd heat treatment was performed at 750℃ for 6 hours after electroplating Cr. The measured bonding strength by ASTM C633 were around 25.6 MPa before thermal cycling, while it increased to 47.6 MPa, after 1,000 cycles. Increasing thermal cycles led to dominant fail mode with cohesive failure inside adhesive, which seemed to be closely related to the increasing bonding strength possibly not only due to higher Cr surface roughness, but also to penetrated channeling crack density. Also, increasing density of penetrated channeling cracks in electroplating Cr layer led to slightly stronger bonding strength due to mechanical interlocking effects of adhesive inside channeling cracks.

키워드

참고문헌

  1. K. H. Lee, "Application of Plating Simulation for PCB and Packaging Process", J. Microelectron. Packag. Soc., 19(3), 1 (2012). https://doi.org/10.6117/kmeps.2012.19.3.001
  2. K. Son, M. H. Choi, K. H. Lee, E. S. Byon, B. H. Lee, and Y. B. Park, "Effects of Heat Treatment Conditions on the Interfacial Reactions and Crack Propagation Behaviors in Electroless Ni/electroplated Cr Coatings", J. Microelectron. Packag. Soc., 23(3), 69 (2016). https://doi.org/10.6117/kmeps.2016.23.3.069
  3. K. Y. Lee, H. J. Won, S. W. Jun, T. S. Oh, J. Y. Byun, and T. S. Oh, "Electrical Resistivity and Solder-Reaction Characteristics of Ni Films Fabricated By Electroplating", J. Microelectron. Packag. Soc., 12(3), 253 (2005).
  4. H. K. Lee, H. N. Lee, J. M. Jeon, and J. Y. Hur, "Effects of Multi-Complex Agent Addition on Characteristics of Electroless Ni-P Solution", J. Kor. Inst. Surf. Eng, 43(2), 111 (2010). https://doi.org/10.5695/JKISE.2010.43.2.111
  5. J. T. Winowlin Jappes, B. Ramamoorty, and P. K. Nair, "A study on the influence of process parameters on efficiency and crystallinity of electroless Ni-P deposits", J. Mater. Process. Tech., 169(2), 308 (2005). https://doi.org/10.1016/j.jmatprotec.2005.03.010
  6. Y. S. Huang, and F. Z. Cui, "Effect of complexing agent on the morphology and microstructure of electroless deposited Ni-P alloy", Surf. Coat. Tech., 201(9-11), 5416 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.189
  7. P. L. Neto, A. N. Correia, and G. P. Silva, "Structural and Morphological Investigations of the Electrodeposited Cr and Ni-Cr-P Coatings and their Electrochemical Behaviors in Chloride Aqueous Medium", J. Braz. Chem. Soc., 17(7), 1419 (2006). https://doi.org/10.1590/S0103-50532006000700032
  8. W. Pfeiffer, C. Koplin, E. Reisacher, and J. Wenzel, "Residual Stresses and Strength of Hard Chromium Coatings", Materials Science Forum, 681, 133 (2011). https://doi.org/10.4028/www.scientific.net/MSF.681.133
  9. M. H. Sohi, A. A. Kashi, and S. M. M. Hadavi, "Comparative tribological study of hard and crack-free electrodeposited chromium coatings", J. Mat. Pro. Tech., 138, 219 (2003). https://doi.org/10.1016/S0924-0136(03)00075-X
  10. H. R. Cho, J. S. Bang, B. H. Rhee, K. J. Lee, B. Lim, Y. M. Han, and H. S. Choi, "Development of Ni/Cr Plating Process for LRE Thrust Chamber(in Kor.)", KSPE Fall Conference, 603 (2009).
  11. M. H. Choi, Y. B. Park, B. H. Rhee, E. Byon, and K. H. Lee, "Effect of Heat Treatment on Interface Behavior in Ni-P/Cr Double Layer(in Kor.)", J. Kor. Inst. Surf. Eng., 48(6), 260 (2015). https://doi.org/10.5695/JKISE.2015.48.6.260
  12. T. Fiedler, R. Gro, J. Rosler, and M. Baker, "Damage mechanisms of metallic HVOF-coatings for high heat flux application", Surf. Coat. Tech., 316(25), 219 (2017). https://doi.org/10.1016/j.surfcoat.2017.03.037
  13. X. F. Zhang, K. S. Zhou, J. B. Song, J. F. Zhang, C. M. Deng, and M. Liu, "Effect of Bond Coating Surface Roughness on Properties of High Temperature Oxidation and Mechanical Properties in Thermal Barrier Coatings", J. Chin. Ceram. Soc., 41(12), 1674 (2013).
  14. American Society for Testing and Materials (ASTM), "Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings", West Conshohocken, PA (2002).
  15. I. Apachitei, F. D. Tichelaar, J. Duszczyk, and L. Katgerman, "The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP-SiC coatings", Surf. Coat. Tech., 149(2-3), 263 (2002). https://doi.org/10.1016/S0257-8972(01)01492-X
  16. M. P. Nascimento, M. A. S. Torres, R. C. Souza, and H. J. C. Voorwald, "Effect of a Shot Peening Pre Treatment on the Fatigue Behaviour of Hard Chromium on Electroless Nickel Interlayer Coated AISI 4340 Aeronautical Steel", Int. J. Mater. Res., 5(2), 95 (2002).
  17. A. Jung, and A. Schnell, "Crack growth in a coated gas turbine superalloy under thermo-mechanical fatigue", Int. J. Fatigue., 30(2), 286 (2008). https://doi.org/10.1016/j.ijfatigue.2007.01.040