DOI QR코드

DOI QR Code

Fabrication and Electrical Property Analysis of [(Ni0.3Mn0.7)1-xCux]3O4 Thin Films for Microbolometer Applications

마이크로볼로미터용 [(Ni0.3Mn0.7)1-xCux]3O4 박막의 제작 및 전기적 특성 분석

  • Choi, Yong Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Yun, Ji Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Hong, Youn Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Jeong Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering & Technology)
  • 최용호 (한국세라믹기술원 전자소재부품센터) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터)
  • Received : 2018.11.27
  • Accepted : 2018.01.25
  • Published : 2019.01.31

Abstract

In order to develop novel thermal imaging materials for microbolometer applications, $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ ($0.18{\leq}x{\leq}0.26$) thin films were fabricated using metal-organic decomposition. Effects of Cu content on the electrical properties of the annealed films were investigated. Spinel thin films with a thickness of approximately 100 nm were obtained from the $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ films annealed at $380^{\circ}C$ for five hours. The resistivity (${\rho}$) of the annealed films was analyzed with respect to the small polaron hopping model. Based on the $Mn^{3+}/Mn^{4+}$ ratio values obtained through x-ray photoelectron spectroscopy analysis, the hopping mechanism between $Mn^{3+}$ and $Mn^{4+}$ cations discussed in the proposed study. The effects of $Cu^+$ and $Cu^{2+}$ cations on the hopping mechanism is also discussed. Obtained results indicate that $[(Ni_{0.3}Mn_{0.7})_{1-x}Cu_x]_3O_4$ thin films with low temperature annealing and superior electrical properties (${\rho}{\leq}54.83{\Omega}{\cdot}cm$, temperature coefficient of resistance > -2.62%/K) can be effectively employed in applications involving complementary metal-oxide semiconductor (CMOS) integrated microbolometer devices.

Keywords

HSSHBT_2019_v28n1_41_f0001.png 이미지

Fig. 1. Cross-sectional SEM image of [(Ni0.3Mn0.7)1-xCux]3O4 (x=0.18) thin film annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_f0002.png 이미지

Fig. 2. Surface FE-SEM image of [(Ni0.3Mn0.7)1-xCux]3O4(x=0.22) thin film annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_f0003.png 이미지

Fig. 3. FT-IR spectra of [(Ni0.3Mn0.7)1-xCux]3O4 thin films annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_f0004.png 이미지

Fig. 4. XPS spectra of (a) Mn 2p3/2 and (b) Cu 2p3/2 signals of [(Ni0.3Mn0.7)1-xCux]3O4 (x=0.18) thin film annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_f0005.png 이미지

Fig. 5. Resistivity of [(Ni0.3Mn0.7)1-xCux]3O4 thin films annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_f0006.png 이미지

Fig. 6. Plot of ln(ρ/T) vs 1/T for [(Ni0.3Mn0.7)1-xCux]3O4 thin films annealed at 380℃ for 5 h.

Table 1. XPS results of [(Ni0.3Mn0.7)1-xCux]3O4 thin films annealed at 380℃ for 5 h.

HSSHBT_2019_v28n1_41_t0001.png 이미지

Table 2. The resistivity (ρ), characteristic temperature (T0), activation energy (Ea) and temperature coefficient of resistance (TCR) of [(Ni0.3Mn0.7)1-xCux]3O4 thin films annealed at 380 for 5 h.

HSSHBT_2019_v28n1_41_t0002.png 이미지

References

  1. C. J. Jeon, K. W. Lee, D. T. Le, Y. H. Jeong, J. S. Yun, J. H. Paik, and J. H. Cho, "Spin Spray-Deposited Spinel Thin Films for Microbolometer Applications", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 27, No. 12, pp. 809-814, 2014. https://doi.org/10.4313/JKEM.2014.27.12.809
  2. R. K. Bhan, R. S. Saxena, C. R. Jalwania, and S. K. Lomash, "Uncooled infrared microbolometer arrays and their characterization techniques", Def. Sci. J., Vol. 59, No. 6, pp. 580-589, 2009. https://doi.org/10.14429/dsj.59.1562
  3. C. J. Jeon, Y. H. Jeong, J. S. Yun, W. I. Park, J. H. Paik, and J. H. Cho, "Electrical Properties of Manganite Thin Films Prepared by Spin Spray Method", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 30, No. 1, pp. 17-22, 2017. https://doi.org/10.4313/JKEM.2017.30.1.17
  4. S. W. Ko, J. Li, N. J. Podraza, E. C. Dickey, and S. Trolier-McKinstry, "Spin Spray-Deposited Nickel Manganite Thermistor Films For Microbolometer Applications", J. Am. Ceram. Soc., Vol. 94, No. 2, pp. 516-523, 2011. https://doi.org/10.1111/j.1551-2916.2010.04097.x
  5. H. Y. Lee, C. L. Wu, C. H. Kao, C. T. Lee, S. F. Tang, W. J. Lin, H. C. Chen, and J. C. Lin, "Investigated performance of uncooled tantalum-doped $VO_x$ floating-type microbolometers", Appl. Surf. Sci., Vol. 354, pp. 106-109, 2015. https://doi.org/10.1016/j.apsusc.2015.03.008
  6. C. Ouyang, W. Zhou, J. Wu, Y. Hou, Y. Gao, and Z. Huang, "Uncooled bolometer based on $Mn_{1.56}Co_{0.96}Ni_{0.48}O_4$ thin films for infrared detection and thermal imaging", Appl. Phys. Lett., Vol. 105, No. 2, pp. 022105(1)-022105(5), 2014. https://doi.org/10.1063/1.4890357
  7. C. J. Jeon, Y. H. Jeong, J. S. Yun, W. I. Park, J. H. Paik, Y. W. Hong, E. S. Kim, and J. H. Cho, "Electrical properties of copper-nickel manganite thin films prepared by metalorganic decomposition", Ceram. Int. Vol. 43, No. 12, pp. 9291-9295, 2017. https://doi.org/10.1016/j.ceramint.2017.04.088
  8. S. W. Ko, H. M. Schulze, D. B. S. John, N. J. Podraza, E. C. Dickey, and S. S. Trolier-McKinstry, "Low temperature crystallization of metastable nickel manganite spinel thin films", J. Am. Ceram. Soc., Vol. 95, No. 8, pp. 2562-2567, 2012. https://doi.org/10.1111/j.1551-2916.2012.05201.x
  9. K. W. Lee, C. J. Jeon, Y. H. Jeong, J. S. Yun, J. H. Nam, J. H. Cho, J. H. Paik, and J. W. Yoon, "Structural Properties of Nickel Manganite Thin Films Fabricated by Metal Organic Decomposition", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 27, No. 4, pp. 226-231, 2014. https://doi.org/10.4313/JKEM.2014.27.4.226
  10. R. N. Jadhav and V. Puri, "Microwave absorption, conductivity and complex pemittivity of fritless $Ni_(1-x)Cu_xMn_2O_4(0{\leq}x{\leq}1)$ ceramic thick film: effect of copper", Prog. Electromagn. Res., Vol. 8, pp. 149-160, 2009. https://doi.org/10.2528/PIERC09052502
  11. N. M. Hagh and G. G. Amatucci, "A new solid-state process for synthesis of $LiMn_{1.5}Ni_{0.5}O-{4-{\delta}}$ spinel", J. Power Sources, Vol. 195, No. 15, pp. 5005-5012, 2010. https://doi.org/10.1016/j.jpowsour.2010.02.011
  12. W. Kong, W. Wei, B. Gao, and A. Chang, "A study on the electrical properties of Mn-Co-Ni-O thin films grown by radio frequency magnetron sputtering with different thicknesses", Appl. Surf. Sci., Vol. 423, pp. 1012-1018, 2017. https://doi.org/10.1016/j.apsusc.2017.06.290
  13. C. Drouet, C. Laberty, J. L. G. Fierro, P. Alphonse, and A. Rousset, "X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel-copper spinel manganites", Int. J. Inorg. Mater., Vol. 2, No. 5, pp. 419-426, 2000. https://doi.org/10.1016/S1466-6049(00)00047-7
  14. K. Park, "Fabrication and Electrical Properties of Mn-Ni-Co-Cu-Si Oxides Negative Temperature Coefficient Thermistors", J. Am. Ceram. Soc., Vol. 88, No. 4, pp. 862-866, 2005. https://doi.org/10.1111/j.1551-2916.2004.00170.x
  15. E. Elbadraoui, J. L. Baudour, F. Bouree, B. Gillot, S. Fritsch, and A. Rousset, "Cation distribution and mechanism of electrical conduction in nickel-copper manganite spinels", Solid State Ion., Vol. 93, No. 3-4, pp. 219-225, 1997. https://doi.org/10.1016/S0167-2738(96)00559-0
  16. C. Zhao, B. Wang, P. Yang, L. Winnubst, and C. Chen, "Effects of Cu and Zn co-doping on the electrical properties of $Ni_{0.5}Mn_{2.5}O_4$ NTC ceramics", J. Eur. Ceram. Soc., Vol. 28, No. 1, pp. 35-40, 2008. https://doi.org/10.1016/j.jeurceramsoc.2007.06.007
  17. R. Schmidt, A. Basu, A. W. Brinkman, Z. Klusek, and P. K. Datta, "Electron-hopping modes in $NiMn_2O_{4+{\delta}}$ materials", Appl. Phys. Lett., Vol. 86, No. 7, pp. 073501(1)-073501(3), 2005. https://doi.org/10.1063/1.1866643