DOI QR코드

DOI QR Code

An Efficient Personal Information Collection Model Design Using In-Hospital IoT System

병원내 구축된 IoT 시스템을 활용한 효율적인 개인 정보 수집 모델 설계

  • Jeong, Yoon-Su (Department of information Communication Convergence Engineering, Mokwon University)
  • 정윤수 (목원대학교 정보통신융합공학부)
  • Received : 2019.02.04
  • Accepted : 2019.03.20
  • Published : 2019.03.28

Abstract

With the development of IT technology, many changes are taking place in the health service environment over the past. However, even if medical technology is converged with IT technology, the problem of medical costs and management of health services are still one of the things that needs to be addressed. In this paper, we propose a model for hospitals that have established the IoT system to efficiently analyze and manage the personal information of users who receive medical services. The proposed model aims to efficiently check and manage users' medical information through an in-house IoT system. The proposed model can be used in a variety of heterogeneous cloud environments, and users' medical information can be managed efficiently and quickly without additional human and physical resources. In particular, because users' medical information collected in the proposed model is stored on servers through the IoT gateway, medical staff can analyze users' medical information accurately regardless of time and place. As a result of performance evaluation, the proposed model achieved 19.6% improvement in the efficiency of health care services for occupational health care staff over traditional medical system models that did not use the IoT system, and 22.1% improvement in post-health care for users who received medical services. In addition, the burden on medical staff was 17.6 percent lower on average than the existing medical system models.

IT 기술의 발달과 함께 의료 서비스 환경이 과거에 비해 많은 변화가 일어나고 있다. 그러나, 의료 기술이 IT 기술과 융합하더라도 의료비 문제와 의료 서비스 관리에 대한 문제는 여전히 해결해야할 사항 중 하나이다. 본 논문에서는 IoT 시스템을 구축한 병원을 대상으로 의료 서비스를 제공받는 사용자의 개인 정보를 의료진이 효율적으로 분석 관리할 수 있는 모델을 제안한다. 제안 모델은 병원내 구축된 IoT 시스템을 통해서 사용자의 의료 정보를 효율적으로 체크하고 관리하는 것이 목적이다. 제안 모델은 다양한 이기종의 클라우드 환경에서 사용될 수 있으며, 사용자의 의료 정보를 추가적인 인적 물적 자원 없이 효율적이면서 빠르게 관리할 수 있다. 특히, 제안모델에서 수집된 사용자의 의료 정보는 IoT 게이트웨이를 통해 서버에 저장되기 때문에 의료진이 시간과 장소에 상관없이 사용자의 의료 정보를 정확하게 분석할 수 있다. 성능평가 결과, 제안 모델은 IoT 시스템을 사용하지 않은 기존 의료 시스템 모델보다 직군별 의료진의 의료 서비스에 대한 효율성이 19.6% 향상되었고, 의료 서비스를 제공받은 사용자의 사후 의료관리 개선율이 22.1% 향상된 결과를 얻었다. 또한, 의료진의 업무 부담률은 기존 의료 시스템 모델보다 평균 17.6% 낮게 나타났다.

Keywords

JKOHBZ_2019_v9n3_140_f0001.png 이미지

Fig 1. Scenarions process of new medical service l

JKOHBZ_2019_v9n3_140_f0002.png 이미지

Fig 2. Overview Operation Process of Proposed Model

JKOHBZ_2019_v9n3_140_f0003.png 이미지

Fig 3. Configuring IoT systems handled in a cloud environment

JKOHBZ_2019_v9n3_140_f0004.png 이미지

Fig. 4. IoT Device function of Proposed Model

Table 1. Simulation Setting

JKOHBZ_2019_v9n3_140_t0001.png 이미지

References

  1. T. W. Kim, K. H. Park, S. H. Yi & H. C. Kim. (2014, June). A Big Data Framework for u-Healthcare Systems Utilizing Vital Signs. Proceedings of the 2014 International Symposium on Computer, Consumer and Control(IS3C), 494-497.
  2. F. Touati, R. Tabish & A. Ben Mnaouer. (2014, Apr). Towards u-health: An indoor 6LoWPAN based platform for real-time healthcare monitoring. Proceedings of the 2013 6th Joint IFIP Wireless and Mobile Networking Conference(WMNC), (pp. 1-4).
  3. Y. S. Lee, N. Bruce, T. Non, E. Alasaarela & H. Lee. (2015, Mar). Hybrid Cloud Service Based Healthcare Solutions. Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops (WAINA), (pp. 25-30).
  4. X. Cui, P. Zhu, X. Yang, K. Li & C. Ji. (2014). Optimized big data K-means clustering using MapReduce. Journal of Supercomputing, 70(3), 1249-1259. https://doi.org/10.1007/s11227-014-1225-7
  5. W. Zhao, H. Ma & Q. He. (2009, Dec). Parallel k-means clustering based on mapreduce. Proceedings of the 1st International Conference on Cloud Computing, (pp. 674-679).
  6. B. Bahmani, B. Moseley, A. Vattani, R. Kumar & S. Vassivitskii. (2012). Scalable $k-means^{{+}{+}}$. Proceedings of the VLDB Endowment, 5(7), 622-633. https://doi.org/10.14778/2180912.2180915
  7. X. Cai, F. Nie & H. Huang. (2013). Multi-view k-means clustering on big data. Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, AAAI Press, (pp. 2598-2604).
  8. Z. A. Khattak, S. Sulaiman & J. A. Manan. (2010). A study on threat model for federated identities in federated identity management system. 2010 International Symposium in Information Technology(ITSim), 2, 618-623.
  9. H. Gao, J. Yan & Y. Mu. (2010). Dynamic Trust Model for Federated Identity Management. 2010 4th International Conference on Network and System Security(NSS), (pp. 55-61).
  10. Y. Zhou, Z. Cao & R. Lu. (2005). Provably secure proxy-protected signature schemes based on factoring. Appl. Math. Comput. 164(1), 83-98. https://doi.org/10.1016/j.amc.2004.04.032
  11. M. Mambo, K. Usuda & E. Okamoto. (1996). Proxy signatures for delegating signing operation., Proceeding of the Third ACM Conf. on Computer and Communications Security, (pp. 48-57).