• Title/Summary/Keyword: Meantime between failure (MTBF)

Search Result 3, Processing Time 0.019 seconds

Fault-tree based reliability analysis for paralleled half-bridge sub-module of HVDC (HVDC 병렬 하프브리지 서브모듈에 대한 고장나무기반의 신뢰성 분석)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1218-1223
    • /
    • 2019
  • In HVDC systems, the full-bridge submodule increases the number of components compared to the half-bridge submodule, but the failure-rate can be reduced by securing 100 % redundancy. However, full-bridge submodules require more complex control algorithms to ensure the redundancy and to prevent arm-short with sufficient dead-time. To solve this problem, we analyse the failure-rate of the paralleled half-bridge configuration with the same number of components and 100 % redundancy as the full-bridge submodule. The fault tree analysis (FTA) method is applied to the conventional part failure analysis to reflect the operation risk of the submodule, thereby predicting the life-cycle of the submodule more accurately. To verify the validity, the failure-rate results of the proposed FTA based analysis method are compared with the failure rate obtained by the part failure method.

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

A Study about False Alarm of Automatic Fire Detection System (자동화재 탐지설비의 비화재보 감소방안)

  • Lee, Jong-Hwa;Lee, Chun-Ha;Kim, Shi-Kuk;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The automatic fire detection system is an important facility installed with focusing on minimizing the damage from a fire. This paper presents in the followings as the methods to reduce the false alarm of the automatic fire detection system; first, to prepare for legal standard so that revised legal standard can be applied to the fire fighting property prior to revision; second, to introduce the performance based fire detection protection design in the law based fire protection design; third, to maintain the wiring of worn-out detector; forth, to introduce an evaluation system to the education for the fire warden; fifth, to extend the standard of MTBF(meantime between failure) of the detector; sixth, to extend of installing the analog type detector; seventh, to improve the structure of reset switch.