DOI QR코드

DOI QR Code

HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy

  • Kang, Feel-soon (Dept. of Electronics and Control Engineering, Hanbat National University) ;
  • Song, Sung-Geun (Energy conversion research center, Korea Electronics Technology Institute)
  • 투고 : 2019.11.29
  • 심사 : 2019.12.26
  • 발행 : 2019.12.31

초록

풀-브리지 서브모듈은 MMC의 단위 시스템으로서 서브모듈에 대한 수명예측은 HVDC 시스템의 유지 보수와 경제성 확보 관점에서 매우 중요하다. 그러나 일반적으로 부품의 종류, 개수, 결합 상태만을 고려하는 수명 예측은 대상 시스템의 구동상태를 고려하지 않는 일반화 된 결과로 실제 시스템의 수명과 크게 차이가 발생할 수 있다. 따라서 본 논문에서는 풀-브리지 서브모듈의 동작 특성을 반영하기 위한 목적으로 고장나무를 설계하고 기본 사상의 고장률에 MIL-HDBK-217F를 적용하여 풀-브리지 서브모듈의 수명을 예측한다. 기존의 부품고장률 분석과 제안된 고장나무 분석에 의한 기대 수명을 비교하고, 풀-브리지 서브모듈의 여유율 적용 여부에 따른 수명을 비교한다.

The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

키워드

참고문헌

  1. J. Guo, J. Liang, X. Zhang, P. D. Judge, X. Wang, and T. C. Green, "Reliability Analysis of MMCs Considering Submodule Designs with Individual or Series-Operated IGBTs," IEEE Trans. Power Delivery, vol.32, no.2, pp.666-677, 2017. DOI: 10.1109/TPWRD.2016.2572061
  2. J. Xu, P. Zhao, and C. Zhao, "Reliability Analysis and Redundancy Configuration of MMC With Hybrid Submodule Topologies," IEEE Trans. Power Electronics, vol.31, no.4, pp.2720-2729, 2016. DOI: 10.1109/TPEL.2015.2444877
  3. Y. Dong, H. Yang, W. Li, and X. He, "Neutral-Point-Shift-Based Active Thermal Control for a Modular Multilevel Converter Under a Single-Phase-to-Ground Fault," IEEE Trans. Ind. Elec., vol.66, no.3, pp.2474-2484, 2019. DOI: 10.1109/TIE.2018.2833019
  4. W. Denson, "The history of reliability prediction," IEEE Trans. reliability, vol.47, no.3, pp.321-328, 1998. DOI: 10.1109/24.740547
  5. Y. D. Wang and B. F. Song, "Overview of system reliability prediction method," Aircraft Design, vol.28, no.1, pp.37-42, 2008. https://doi.org/10.3969/j.issn.1673-4599.2008.01.009
  6. J. Jones and J. Hayes, "A comparison of electronic-reliability prediction models," IEEE Trans. Reliability, vol.48, no.2, pp.127-134, 1999. DOI: 10.1109/24.784270
  7. M. J. Cushin, D. E. Mortin , T. J. Stadterman, and A. Malhotra, "Comparison of Electronics-Reliability Assessment Approaches," IEEE Trans. Reliability, vol.42, no.4, pp.542-546, 1993. DOI: 10.1109/24.273574
  8. Reliability prediction of electric equipment, Department of Defense, Washington DC, Tech. Rep. MIL-HDBK-217F, 1991.
  9. H. Lambilly and H. O. Keser, "Failure Analysis of Power Modules: A Look at the Packaging and Reliability of Large IGBT's," IEEE Trans. Components, Hybrids, and Manufacturing Tech., vol.16, pp.412-417, 1993. DOI: 10.1109/IEMT.1992.639922