• Title/Summary/Keyword: 호기조

Search Result 154, Processing Time 0.021 seconds

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.

혐기-호기 공정을 이용한 Acid Red 14 처리

  • 박영식;안갑환
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.176-177
    • /
    • 2001
  • 본 연구에서 혐기-호기 공정을 이용한 색도제거 공정에서 호기조는 유기물질의 추가제거와 중간생성물의 분해라는 기존의 역할 뿐 아니라, 색도의 추가제거도 담당한다는 사료되었다. 혐기-호기공정을 이용하여 dye를 제거하는 공정에서 호기조는 활성슬러지보다 생물막 공정으로 운전하는 것이 색도제거에 유리하다고 사료되었다.

  • PDF

HRT에 따른 혐기-호기-무산소 공정의 BNR 특성

  • 김홍태;김은경
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.47-48
    • /
    • 2003
  • 무산소조의 HRT가 3.5시간에서는 탈질이 일어날 수 있는 조건을 이루지 못하였다. Phase 4에는 무산소조를 3.7시간으로 고정하고 호기조와 혐기조의 HRT를 조절하여도 전체적인 효율에는 큰 영향을 미치지 않았다. 또한 슬러지 반송만으로 높아질수 있는 NO3-N 농도를 무산소조의 HRT로 조절함과 동시에 호기조에서의 DO농도를 1.5로 주입함으로써 높은 질산화로 인해 발생되는 낮은 탈질률을 막아줌으로써 인제거율에도 효과를 나타냄을 알 수 있다.

  • PDF

A Study on Release Characteristics of Lake Sediments under Oxic and Anoxic Conditions (호수 퇴적물의 호기 및 혐기조건에서의 용출 특성에 대한 연구)

  • Yoon, Mi-Hae;Hyun, Jun-Taek;Huh, Nam-Soo;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1003-1012
    • /
    • 2007
  • In this study, we analyzed the release differences for some critical pollution compounds according to the surrounding conditions in order to predict water quality due to the sedimental releases and the release characteristics at different sedimental locations in Lake Leewon, in Tae-An area. COD, nitrogens and phosphates were analyzed using the standard methods for water quality, based on high chloride ion concentration(greater than 2,000 ppm). For COD, the release rate increased in the anoxic basin but almost the same in the oxic basin. For $NH_3$-N, the release rate decreased in the oxic basin as you go A through C point meanwhile, for $NO_3$-N and T-N, the tendency was reversed because of nitrification of them. In the anoxic basin, the release rates of $NH_3$-N and $NO_3$-N went up with A through C path. However, the release rate of T-N was found to decrease. Also, for $PO_4$-P and T-P, the release rates in the oxic basin were lowest at B point mainly because the phosphates were at less released in the highly $O_2$ concentrated environment. In the anoxic reactor, $PO_4$-P was released similarly regardless of the sampling points. In summary, the release rates in the oxic reactor were greater than those in the anoxic reactor for COD and $NO_3$-N. For the other components, the anoxic basin generated the higher release rates.

Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance (물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가)

  • Yoon, Cho-Hee;Park, Seung-Hwan;Lee, Sang-Hoon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-239
    • /
    • 2000
  • This study was investigated to estimate optimal conditions and biological oxic denitrification to treat wastewater with low C/N ratio and high strength total inorganic nitrogen (TIN) concentration by using $A_2O$ fixed biofilm system. The lab-scale experimental system packed with media, which were composed of polyvinylidene chloride fiber (oxic basin) and ceramic ball (anaerobic and anoxic basin), was used. This system was operated with various influent alkalinities at the C/N(TOC/TIN) ratio of 0.5. The study results showed that TOC were removed over 96.0% at all operation conditions. The removal efficiencies over 93.5% for $NH_4{^+}-N$ and 81.8% for TIN were obtained at the alkalinity of about 1210mg/L(Run 5). Among the removal of TIN, 64.9% was occurred by biological denitrification at an oxic basin. It was confirmed through mass balance of alkalinity and nitrogen that the amount of alkalinity produced during biological denitrification at oxic basin was 2.49~3.46 mg Alkalinity/mg $NO_2{^-}-N$, ${\Delta}TOC/{\Delta}DEN$ of 0.34 (Run 5) was obtained at an oxic basin, which was less than the theoretical value of 1.22.

  • PDF

Sequential Anoxic/Aerobic Biofilm Reactors and MF Membrane System for the Removal of Perchlorate and Nitrate (무산소/호기생물막반응조와 MF막의 연속처리에 의한 퍼클로레이트와 질산염 제거)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.301-306
    • /
    • 2013
  • This research was conducted to investigate whether sequential anoxic/aerobic biofilm reactors and microfilteration (MF) membrane system can be used as a direct treatment for the removal of perchlorate and nitrate in groundwater. The biofilm process consisted of an anoxic first stage to remove perchlorate and nitrate and aerobic second stage to remove remaining acetate used as a carbon source for dissimilatory reduction of perchlorate and nitrate. In final stage, hollow fiber MF membrane was used to remove turbidity. In this research, perchlorate was reduced from the influent concentration of 102 ${\mu}/L$ to below the IC detection level (5 ${\mu}/L$) and nitrate was reduced from 61.8 mg/L (14 mg/L $NO_3$-N) to 4.4 mg/L (1 mg/L $NO_3$-N). Acetate used as a carbon source was consumed from 179 mg/L $CH_3COO-$ to 117 and 11 mg/L $CH_3COO^-$ in effluents from anoxic and aerobic biofilm reactors, respectively. Turbidity was reduced from 3.0 NTU to 1.5, 0.3, and 0.2 NTU in effluents from anoxic/aerobic biofilm reactors and MF membrane, respectively. It is expected that the sequential anoxic/aerobic biofilm reactors and MF membrane system can efficiently remove perchlorate and nitrate in surface water or groundwater.

Changes of Nitrifying Bacterial Populations in Anaerobic-Anoxic-Oxic Reactors (혐기-무산소-호기 반응조내 질화세균군의 변화)

  • Park, Jong-Woong;Lee, Young-Ok;Go, Jun-Heok;Ra, Won-Sik;Lim, Uk-Min;Park, Ji-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.138-144
    • /
    • 2005
  • This study was carried out to investigate the changes of nitrifying bacterial populations including Nitrosomonas sp. and Nitrobacter sp. in $A^2/O$ pilot plant with the configuration of anaerobic-anoxic-oxic reactors. The suspended nitrifying bacterial populations in mixed liquor and those of attached populations on granular carrier surface made by molded waste tire were analyzed by Fluorescent in situ Hybridization(FISH) method. The nitrification rate of a pilot plant showed the value of $1.97{\sim}2.98\;mg\;N/g$ MLVSS hr. The ratios of suspended ammonia oxidizer including Nitrosomonas sp. (NSO) to total bacteria in each reactor were oxic < anoxic < anaerobic. On the contrary, the ratios of suspended nitrite oxidizer including Nitrobacter sp. (NIT) were anaerobic < anoxic < oxic. The thickness, dry density and mass of the attached biomass on granular carriers were $180{\sim}188\;{\mu}m$, $38.5{\sim}43.9\;mg/cm^3$, $29.4{\sim}32.5\;mg/g$, respectively. Also, the ratios of attached nitrifier to total bacteria on granular carriers were similar regardless of ammonia/nitrite-oxidizer (NSO; 3.2%, NIT; 2.8%) and very low compared to those(NSO; $22.8{\sim}28.4%$, NIT; $17{\sim}26%$) of suspended nitrifier.

Parameter Estimation of the Aerated Wetland for the Performance of the Polluted Stream Treatment (오염하천 정화를 위한 호기성 인공습지의 운영인자 평가)

  • Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.302-310
    • /
    • 2019
  • A constructed wetland with the aerobic tank and anaerobic/anoxic tank connected in series was employed in order to treat highly polluted stream water. The aerobic tank was maintained aerobic with a continuous supply of air through the natural air draft system. Five pilot plants having different residence times were employed together to obtain parameters for the best performances of the wetland. BOD and COD removals at the aerobic tank followed the first order kinetics. COD removal rate constants were slightly lower than BOD. The temperature dependence of COD (θ = 1.0079) and BOD (θ = 1.0083) was almost the same, but the temperature dependence (θN) of T-N removal was 1.0189. The SS removal rate was as high as 98% and the removal efficiency showed a tendency to increase with increasing hydraulic loading rate (Q/A). The main mechanism of BOD and COD removal at the anaerobic/anoxic tank was entirely different from that of the aerobic tank. BOD and COD were supplied as the carbon source for biological denitrification. T-P was believed to be removed though the cation exchange between orthophosphate and gravels within the anaerobic and anoxic tanks. The wetland could successfully be operated without being blocked by the filtered solid which subsequently decomposed at an extremely fast rate.