DOI QR코드

DOI QR Code

암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석

Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 정영관 (금오공과대학교 기계공학과)
  • KIM, KYOUNG HOON (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • JUNG, YOUNG GUAN (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2019.09.29
  • 심사 : 2019.12.30
  • 발행 : 2019.12.30

초록

The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

키워드

참고문헌

  1. O. M. Ibrahim, "Design consideration for ammonia-water Rankine cycle", Energy, Vol. 21, No. 10, 1996, pp. 835-841, doi: https://doi.org/10.1016/0360-5442(96)00046-1.
  2. V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Appl. Therm. Eng., Vol. 28, No. 2-3, 2008, pp. 190-194, doi: https://doi.org/10.1016/j.applthermaleng.2007.03.025.
  3. K. H. Kim, Y. G. Bae, Y. G. Jung, and S. W. Kim, "Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source", Trans. of Korean Hydrogen and New Energy Society, Vol. 29, No. 2, 2018, pp. 148-154, doi: https://doi.org/10.7316/KHNES.2018.29.2.148.
  4. P. A. Lolos and E. D. Rogdakis, "A Kalina power cycle driven by renewable energy sources", Energy, Vol. 34, No. 4, pp. 457-464, doi: https://doi.org/10.1016/j.energy.2008.12.011.
  5. M. Jonsson and J. Yan, "Ammonia-water bottoming cycles: a comparison between gas engines and gas diesel engines as prime movers", Energy, Vol. 26, No. 1, 2001, pp. 31-44, doi: https://doi.org/10.1016/S0360-5442(00)00043-8.
  6. P. Roy, M. Desilets, N. Galanis, H. Nesreddine, and E. Cayer, "Thermodynamic analysis of a power cycle using a lowtemperature source and a binary $NH_3-H_2O$ mixture as working fluid", Int. J. Therm. Sci., Vol. 49, No. 1, 2010, pp. 48-58, doi: https://doi.org/10.1016/j.ijthermalsci.2009.05.014.
  7. W. R. Wagar, C. Zamfirescu, and I. Dincer, "Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production", Energ. Convers. Manage., Vol. 51, No. 12, 2010, pp. 2501-2509, doi: https://doi.org/10.1016/j.enconman.2010.05.014.
  8. K. H. Kim, C. H. Han, and K. Kim, "Effects of ammonia concentration on the thermodynamic performances of a mmonia-water based power cycles", Thermochim. Acta, Vol. 530, 2012, pp. 7-16, doi: https://doi.org/10.1016/j.tca.2011.11.028.
  9. K. H. Kim, H. J. Ko, and K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of a mmonia-water based power cycles", Appl. Energy, Vol. 113, 2014, pp. 970-981, doi: https://doi.org/10.1016/j.apenergy.2013.08.055.
  10. K. H. Kim, "Thermodynamic Analysis of Kalina Based Power and Cooling Cogeneration Cycle Employed Once Through Configuration", Energies, Vol. 12, No. 8, 2019, pp. 1536, doi: https://doi.org/10.3390/en12081536.
  11. L. A. Prananto, I. N. Zaini, B. I. Mahendranata, F. B. Juangsa, M. Aziz, and T. A. F. Soelaiman, "Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant", Appl. Therm. Eng., Vol. 132, 2018, pp. 686-696, doi: https://doi.org/10.1016/j.applthermaleng.2018.01.003.
  12. Z. Y. Guo, Z. Y. Zhu, and X. G, Liang, "Entransy-a physical quantity describing heat transfer ability", Int. J. Heat Mass Transfer, Vol. 50, No. 13-14, 2007, pp. 2545-2556, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034.
  13. X. T. Cheng and X. G. Liang, "From thermomass to entransy", Int. J. Heat Mass Transfer, Vol. 62, 2013, pp. 174-177, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.063.
  14. M. Xu, "The thermodynamic basis of entransy and entransy dissipation", Energy, Vol. 36, No. 7, 2011, pp. 4272-4277, doi: https://doi.org/10.1016/j.energy.2011.04.016.
  15. K. H. Kim and K. Kim, "Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems", Int. J. Heat Mass Transfer, Vol. 84, 2015, pp. 80-90, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.002.
  16. K. H. Kim, "Optimal Analysis of Irreversible Carnot Cycle Based on Entransy Dissipation", Trans. Korean Soc. Mech. Eng. B, Vol. 41, No. 2, 2017, pp. 87-95, doi: https://doi.org/10.3795/KSME-B.2017.41.2.087.
  17. X. Cheng, Q. Zhang, and X. Liang, "Analyses of entransy dissipation, entropy generation and entransy-dissipationbased thermal resistance on heat exchanger optimization", Appl. Therm. Eng., Vol. 38, 2012, pp. 31-39, doi: https://doi.org/10.1016/j.applthermaleng.2012.01.017.
  18. J. Guo and M. Xu, "The application of entransy dissipation theory in optimization design of heat exchanger", Appl. Therm. Eng., Vol. 36, 2012, pp. 227-235, doi: https://doi.org/10.1016/j.applthermaleng.2011.12.043.
  19. K. H. Kim, K. Kim, and H. J. Ko, "Entropy and Exergy Analysis of a Heat Recovery Vapor Generator for Ammonia- Water Mixtures", Entropy, Vol. 16, No. 4, 2014, pp. 2056-2070, doi: https://doi.org/10.3390/e16042056.
  20. F. Xu and D. Y. Goswami, "Thermodynamic properties of ammonia-water mixtures for power-cycle application", Energy, Vol. 24, No. 6, 1999, pp. 525-536, doi: https://doi.org/10.1016/S0360-5442(99)00007-9.