DOI QR코드

DOI QR Code

아산화질소 환원 세균 컨소시움의 특성

Characterization of a Nitrous Oxide-reducing Bacterial Consortium

  • 박형주 (이화여자대학교 환경공학과) ;
  • 권지현 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Park, Hyung-Joo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kwon, Ji-Hyeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2019.08.13
  • 심사 : 2019.10.08
  • 발행 : 2019.12.28

초록

아산화질소는 이산화탄소보다 약 310배 높은 지구온난화 지수를 갖는 주요 온실가스이다. 본 연구에서는 아산화질소 배출저감을 위해 고도처리슬러지를 접종원으로 이용하여 아산화질소 환원 컨소시움을 확보하였다. 이 컨소시움의 우점종은 Sulfurovum (17.95%), Geobacter (14.63%), Rectinema(11.45%)와 Chlorobium (8.24%)이었다. 아산화질소 환원 컨소시움의 활성에 미치는 C/N 비(mol·mol-1), 탄소원의 영향을 조사한 결과, C/N 비 6.3 및 아세트산을 탄소원으로 공급한 조건에서 최대 아산화질소 환원 활성을 나타냈다. 또한, 본 컨소시움의 3,000 ppm 이하의 아산화질소 농도 범위에서 아산화질소 농도가 증가할수록 환원속도도 증가하였다. 속도론적 해석 결과, 아산화질소 환원 컨소시움의 최대 아산화질소 환원 속도는 163.9 ㎍-N·g VSS-1·h-1이었다. 본 Consortium은 아산화질소를 N2로 환원하는데 관여를 nosZ 뿐만 아니라, 질산염을 아질산염으로 환원하는 narG, 아질산염을 일산화질소로 환원하는 nirK 유전자 및 일산화질소를 아산화질소를 환원하는 norB 유전자를 모두 보유하고 있었다. 이는 본 컨소시움은 아산화질소 제거 공정 뿐 만 아니라, 탈질공정에도 활용 가능한 유용한 미생물 자원임을 의미한다.

Nitrous oxide (N2O) is a greenhouse gas with a global warming potential 310 times higher than that of carbon dioxide. In this study, an N2O-reducing consortium was obtained by enrichment culture using advanced treatment sludge as the inoculum. The dominant bacteria in the consortium were Sulfurovum (17.95%), Geobacter (14.63%), Rectinema (11.45%), and Chlorobium (8.24%). The consortium displayed optimal N2O reducing activity when acetate was supplied as the carbon source at a carbon/nitrogen ratio (mol·mol-1) of 6.3. The N2O reduction rate increased with increasing N2O concentration at less than 3,000 ppm. Kinetic analysis revealed that the maximum N2O reduction rate of the consortium was 163.9 ㎍-N·g-VSS-1·h-1. Genes present in the consortium included nosZ (reduction of nitrous oxide to N2), narG (reduction of nitrate to nitrite), nirK (reduction of nitrite to nitric oxide), and norB (reduction of nitric oxide to nitrous oxide). These results indicate that the N2O-reducing consortium is a promising bioresource that can be used in denitrification and N2O mitigation.

키워드

참고문헌

  1. IPCC. 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465-570. Cambridge Univ Press.
  2. Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide ($N_2O$): the dominant ozone-depleting substance emitted in the 21st century. Science 326: 123-125. https://doi.org/10.1126/science.1176985
  3. Caranto JD, Lancaster KM. 2017. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc. Natl. Acad. Sci. USA 115: 8217-8222. https://doi.org/10.1073/pnas.1704504114
  4. Terada A, Sugawara S, Hojo K, Takeuchi Y, Riya S, Harper WF, et al. 2017. Hybrid nitrous oxide production from a partial nitrifying bioreactor: hydroxylamine interactions with nitrite. Environ. Sci. Technol. 51: 2748-2756. https://doi.org/10.1021/acs.est.6b05521
  5. Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. 2017. A review on nitrous oxide ($N_2O$) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci. Total Environ. 596-597: 106-123. https://doi.org/10.1016/j.scitotenv.2017.03.191
  6. Law Y, Ye L, Pan Y, Yuan Z. 2012. Nitrous oxide emissions from wastewater treatment processes. Philos. Trans. R. Soc. Lond B Biol. Sci. 367: 1265-1277. https://doi.org/10.1098/rstb.2011.0317
  7. Lee K. 2010. Biological removal of nitrogen oxides from combustion flue gases. Appl. Chem. Eng. 21: 243-251.
  8. Rodriguez-CaballeroaI A, Aymericha Ricardo Marquesab I, Pochc M, Pijuan M. 2015. Minimizing $N_2O$ emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res. 71: 1-10. https://doi.org/10.1016/j.watres.2014.12.032
  9. Kampschreur MJ, Temmink H, Kleerebezema R, Jetten MSM, Loosdrechta MCM. 2009. Nitrous oxide emission during wastewater treatment. Water Res. 43: 4093-4103. https://doi.org/10.1016/j.watres.2009.03.001
  10. Song K, Suenaga T, Harper WF, Hori T, Riya S, Hosomi M, et al. 2015. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. Environ. Sci. Pollut. Res. 22: 19562-19570. https://doi.org/10.1007/s11356-015-5129-8
  11. Kinh CT, Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, et al. 2017. Counter-diffusion biofilms have lower $N_2O$ emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. Water Res. 124: 363-371. https://doi.org/10.1016/j.watres.2017.07.058
  12. Domingo-Félez C, Mutlu AG, Jensen MM, Smets BF. 2014. Aeration strategies to mitigate nitrous oxide emissions from singlestage nitritation/anammox reactors. Environ. Sci. Technol. 48: 8679-8687. https://doi.org/10.1021/es501819n
  13. Yoon H, Song MJ, Yoon S. 2017. Design and feasibility analysis of a self-sustaining biofiltration system for removal of low concentration $N_2O$ emitted from wastewater treatment plants. Environ. Sci. Technol. 51: 10736-10745. https://doi.org/10.1021/acs.est.7b02750
  14. Wakako IO, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, et al. 2013. Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J. Biosci. Bioeng. 115: 37-42. https://doi.org/10.1016/j.jbiosc.2012.08.015
  15. Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net $N_2O$-reduction properties of novel aerobically $N_2O$-reducing bacteria. Soil. Sci. Plant Nutr. 62: 230-239. https://doi.org/10.1080/00380768.2016.1178076
  16. Su Q, Ma C, Domingo-Félez C, Kiil AS, Thamdrup B, Jensen MM, et al. 2017. Low nitrous oxide production through nitrifierdenitrification in intermittent-feed high-rate nitritation reactors. Water Res. 123: 429-438. https://doi.org/10.1016/j.watres.2017.06.067
  17. Kim TG, Yi T, Lee EH, Ryu HW, Cho KS. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotechnol. 95: 1051-1059. https://doi.org/10.1007/s00253-011-3728-y
  18. Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3: 372. https://doi.org/10.3389/fmicb.2012.00372
  19. Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974. https://doi.org/10.1128/AEM.00643-07
  20. Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M. 2014. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. https://doi.org/10.1016/j.jbiosc.2014.02.028
  21. Casciotti KL, Ward BB. 2005. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammoniaoxidizing bacteria. FEMS Microbiol. Ecol. 52: 197-205. https://doi.org/10.1016/j.femsec.2004.11.002
  22. Giovannelli D, Chung M, Staley J, Starovoytov V, Bris NL, Vetriani C. 2016. Sulfurovum riftiae sp. nov., a mesophilic, thiosulfateoxidizing, nitrate-reducing chemolithoautotrophic epsilonproteobacterium isolated from the tube of the deep-sea hydrothermal vent polychaete Riftia pachyptila. Int. J. Syst. Evol. Microbiol. 66: 2697-2701. https://doi.org/10.1099/ijsem.0.001106
  23. Regan HKM. 2017. No facultative nitrate reduction by electroderespiring Geobacter metallireducens biofilms as a competitive reaction to electrode reduction in a bioelectrochemical system title. Am. Chem. Soc. 49: 3195-3202.
  24. Wahlund MTM. 1993. Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 175: 474-478. https://doi.org/10.1128/jb.175.2.474-478.1993
  25. Daniel CSLDL. 2003. Nitrite as an energy-conserving electron sink for the acetogenic bacterium Moorella thermoacetica. Curr. Microbiol. 46: 0329-0333. https://doi.org/10.1007/s00284-002-3830-6
  26. Okereke GU. 1993. Growth yield of denitrifiers using nitrous oxide as a terminal electron acceptor. J. Microbiol. Biotechnol. 9: 59-62. https://doi.org/10.1007/BF00656518
  27. Luo YH, Chen R, Wen LL, Meng F, Zhang Y, Lai CY, et al. 2015. Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environ. Sci. Technol. 49: 2341-2349. https://doi.org/10.1021/es504990m
  28. Ginige MP, Bowyer JC, Foley L, Keller J, Yuan Z. 2009. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones. Biodegradation 20: 221-234. https://doi.org/10.1007/s10532-008-9215-1
  29. Baytshtok V, Lu H, Park H, Kim S, Yu R, Chandran K. 2009. Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria. Biotechnol. Bioeng. 102: 1527-1536. https://doi.org/10.1002/bit.22213
  30. Mokhayeri Y, Riffat R, Murthy S, Bailey W, Takacs I, Bott C. 2009. Balancing yield, kinetics and cost for three external carbon sources used for suspended growth post-denitrification. Water Sci. Technol. 60: 2485-2491. https://doi.org/10.2166/wst.2009.623
  31. Hallin S, Pell M. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32: 13-18. https://doi.org/10.1016/S0043-1354(97)00199-1
  32. Purtschert I, Siegrist WGH. 1996. Enhanced denitrification with methanol at WWTP Zurich-Werdholzli. Water Sci. Technol. 33: 117-126. https://doi.org/10.2166/wst.1996.0316
  33. Aravinthan.V, Mino T, Takizawa S, Satoh H, Matsuo T. 2001. Sludge hydrolysate as a carbon source for denitrification. Water Sci. Technol. 43: 191-199.
  34. Tam NFY, Leung GLW, Wong YS. 1994. The effects of external carbon loading on nitrogen removal in sequencing batch reactors. Water Sci. Technol. 30: 73-81.
  35. Aesoy A, Odegaard H, Bach K, Pujol R, Hamon M. 1998. Denitrification in a packed bed biofilm reactor (biofor)-experiments with different carbon sources. Water Res. 32: 1463-1470. https://doi.org/10.1016/S0043-1354(97)00358-8
  36. Ribera-Guardia A, Kassotaki E, Gutierrez O, Pijuan M. 2014. Effect of carbon source and competition for electrons on nitrous oxide reduction in a mixed denitrifying microbial community. Process. Biochem. 49: 2228-2234. https://doi.org/10.1016/j.procbio.2014.09.020
  37. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. 2013. The peokaryotes, pp. 1-635. 4th Ed. Springer, New York, Berlin Heidelberg.
  38. Gottschalk G. 1986. Bacterial metabolism, pp. 1-341. 2nd Ed. Springer, New York, Berlin Heidelberg.
  39. Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. 2015. Metabolic methanol: molecular pathways and physiological roles. Physiol. Rev. 95: 603-644. https://doi.org/10.1152/physrev.00034.2014
  40. Paul JW, Beauchamp EG, Trevors JT. 1989. Acetate, propionate, butyrate, glucose, and sucrose as carbon sources for denitrifying bacteria in soil. Can. J. Microbiol. 35: 754-759. https://doi.org/10.1139/m89-126