DOI QR코드

DOI QR Code

Cultivable Bacterial Community Analysis of Dairy Activated Sludge for Value Addition to Dairy Wastewater

  • 투고 : 2019.01.29
  • 심사 : 2019.04.29
  • 발행 : 2019.12.28

초록

Analysis of bacterial communities based on their 16S rDNA sequences revealed the predominance of Proteobacteria (Aeromonas sp., Acinetobacter sp. and Thaueraamino aromatica sp.) and uncultured bacterium in activated sludge from the effluent treatment plant (ETP) of Mother Dairy, Calcutta (India). Each isolate was used for bioremediation of dairy wastewater with simultaneous conversion of nitrogenous pollutants into ammonia. A consortium developed using seven of these isolates and three Bacillus strains from different environmental origins could reduce 93% nitrate with simultaneous production of ammonia (626 ㎍/100 ml) within 20 h in non-aerated, immobilized conditions as compared to 82% nitrate reduction producing 2.4 ㎍/100 ml ammonia in 96 h with extensive aeration in a conventional ETP. The treated ammonia-rich effluent could be used instead of freshwater and fertilizer during cultivation of mung bean with 1.6-fold increase in grain yield. The ETP with the surrounding agricultural land makes this process a zero liquid discharge technology for using the biofertilizer generated. In addition, the process requires minimal energy supporting sustained environmental health. This method is thus proposed as an alternative approach for small-scale dairy ETPs.

키워드

참고문헌

  1. Banerjee A. 2001. Dairying systems in India. Available from http://www.fao.org/docrep/T3080T/t3080T07.htm. Accessed April 17, 2019.
  2. Wojdalski J, Drozdz B, Piechocki J, Gaworski M, Zander Z, Marjanowski J. 2013. Determinants of water consumption in the dairy industry. Pol. J. Chem. Tech. 15: 61-72.
  3. Punnagaiarasi A, Elango A, Rajarajan G, Prakash S. 2017. Bioremediation- An Ecosafe Approach for Dairy effluent treatment. pp. 45-50. In Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (eds.), Bioremediation and Sustainable Technologies for Cleaner Environment, Springer, Cham.
  4. Bezerra Jr. RA, Rodrigues JAD, Ratusznei SM, Zaiat M, Foresti E. 2009. Effects of feed time, organic loading and shock loads in anaerobic whey treatment by an AnSBBR with circulation. Appl. Biochem. Biotechnol. 157: 140-158. https://doi.org/10.1007/s12010-008-8371-4
  5. Dague RR, Habben CE, Pidaparti SR. 1992. Initial studies on the anaerobic sequencing batch reactor. Water Sci. Technol. 26: 2429- 2432. https://doi.org/10.2166/wst.1992.0754
  6. Belancon D, Fuzzato MC, Gomes DRS, Cichello GCV, Pinho SCD, Ribeiro R, et al. 2010. A comparison of two bench-scale anaerobic systems used for the treatment of dairy effluents. Int. J. Dairy Tech. 63: 290-296. https://doi.org/10.1111/j.1471-0307.2010.00569.x
  7. Petruy R, Lettinga G. 1997. Digestion of a milk - fat emulsion. Biores. Technol. 61: 141-149. https://doi.org/10.1016/S0960-8524(97)00042-4
  8. Tocchi C, Federici E, Fidati L, Manzi R, Vincigurerra V, Petruccioli M. 2012. Aerobic treatment of dairy wastewater in an industrial three-reactor plant: Effect of aeration regime on performances and on protozoan and bacterial communities. Water Res. 46: 3334-3344. https://doi.org/10.1016/j.watres.2012.03.032
  9. Schwarzenbeck N, Borges JM, Wilderer PA. 2005. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl. Microbiol. Biotechnol. 66: 711-718. https://doi.org/10.1007/s00253-004-1748-6
  10. Fraga FA, Garcia HA, Hooijmans CM, Miguez D, Brdjanovic D. 2017. Evaluation of a membrane bioreactor on dairy wastewater treatment and reuse in Uruguay. Int. Biodeterior. Biodegrad. 119: 552-564. https://doi.org/10.1016/j.ibiod.2016.11.025
  11. Li X, Zhang R. 2002. Aerobic treatment of dairy wastewater with sequencing batch reactor systems. Bioprocess Biosyst. Eng. 25: 103-109. https://doi.org/10.1007/s00449-002-0286-9
  12. Porges N, Jasewicz L, Hoover SR. 1953. Aerobic treatment of dairy wastes. Appl. Microbiol. 1: 262-270. https://doi.org/10.1128/am.1.5.262-270.1953
  13. Charpentier J, Florentz M, David G. 1987. Oxidation-reduction potential (ORP) regulation: a way to optimize pollution removal and energy savings in the low load activated sludge process. Wat. Sci. Tech. 19: 645-655. https://doi.org/10.2166/wst.1987.0244
  14. Liu Y, Tay JH. 2001. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol. Adv. 19: 97-107. https://doi.org/10.1016/S0734-9750(00)00066-5
  15. Gautam SP. 2015. Guide manual: water and wastewater_analysis. Central Pollution Control Board, Ministry of Environment & Forests, Government of India. Available from http://www.indiaenvironmentportal.org.in/files/file/guidemanualw&wwanalysis.pdf. Accessed April 17, 2019.
  16. Nandy P, Thakur AR, RayChaudhuri S. 2007. Characterisation of microbial strains obtained through microbial profiling of urine. OnLine J. Biol. Sci. 7: 44-51. https://doi.org/10.3844/ojbsci.2007.44.51
  17. Martin R, Soberon N, Vaneechoutte M, Florez AB, Vazquez F, Suarez JE. 2008. Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. Int. Microbiol. 11: 261-266.
  18. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  19. Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, et al. 2010. Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl. Environ. Microbiol. 76: 2916-2922. https://doi.org/10.1128/AEM.02289-09
  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  21. Cataldo DA, Maroon M, Schrader LE, Youngs VL. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71-80. https://doi.org/10.1080/00103627509366547
  22. RayChaudhuri S, Thakur AR, Gantayet LM. 27. 01. 2017. Patent no. 201731003023. Bio-fertilizer production from bacterial consortium.
  23. Das S, Mukherjee I, Sudarshan M, Sinha TP, Thakur AR, RayChaudhuri S. 2012. Bacterial isolates of marine coast as commercial producer of protease. OnLine J. Biol. Sci. 12: 96-107. https://doi.org/10.3844/ojbsci.2012.96.107
  24. DebRoy S, Bhattacharjee A, Thakur AR, RayChaudhuri S. 2013. Draft Genome of a nitrate and phosphate accumulating Bacillus sp MCC0008. Genome A. 1: e00189-12.
  25. Mishra M, Jain S, Thakur AR, RayChaudhuri S. 2014. Microbial community in packed bed bioreactor involved in nitrate remediation from low level radioactive waste. J. Basic Microbiol. 54: 198-203. https://doi.org/10.1002/jobm.201200676
  26. DebRoy S, Mukherjee P, Roy S, Thakur AR, RayChaudhuri S. 2013. Draft Genome of a phosphate accumulating Bacillus sp WBUNB004. Genome A. 1: e00251-12.
  27. RayChaudhuri S, Sharmin J, Banerjee S, Jayakrishnan U, Saha A, Mishra M, et al. 2016. Novel microbial system developed from low level radioactive waste treatment plant for environmental sustenance. pp. 121-154. In Saleh HEDM, Rahman ROA (eds.), Management of Hazardous Wastes, Intech, Croatia.
  28. Saha A, Bhushan S, Mukherjee P, Chanda C, Bhaumik M, Ghosh M, et al. 2017. Simultaneous sequestration of nitrate and phosphate from wastewater using a tailor made bacterial consortium in biofilm bioreactor. J. Chem. Technol. Biotechnol. 93: 1279-1289.
  29. RayChaudhuri S, Mukherjee I, Datta D, Chanda C, Krishnan GP, Bhatt S, et al. 2016. Developing tailor-made microbial consortium for effluent remediation. pp. 17-35. In Rahman ROA, SalehHEDM (eds.), Nuclear Material Performance, Intech.
  30. Oh HM, Ku YH, Ahn KH, Jang KY, Kho YH, Kwon GS, et al. 1995. Biological treatment of phenolic Industrial wastewater by a mixed culture immobilized on ceramic beads. Korean J. Microbiol. Biotechnol. 23: 755-762.
  31. Park AR, Koo BS, Kim JS, Kim EJ, Lee HC. 2016. Lactulose production using Immobilized cells including thermostable Cellobiose 2-epimerase. Miocrobiol. Biotechnol. Lett. 44: 504-511. https://doi.org/10.4014/mbl.1609.09005
  32. Goldman JC, Caron DA, Dennett MR. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio. Limnol. Oceanogr. 32: 1239-1252. https://doi.org/10.4319/lo.1987.32.6.1239
  33. Ghoshal T, Ghosh S, Saha A, Halder N, Thakur AR, RayChaudhuri S. 2014. Combination of conventional and in-silico approach for identifying an industrially important isolate of Aeromonas. Online J. Biol. Sci. 14: 70-83. https://doi.org/10.3844/ojbsci.2014.70.83
  34. Mroczkowski W, Stuczynski T. 2006. Toxic effects of ammonia volatilizing from sandy soil fertilized with ammonium salts and urea on barley crop decreases. Polish J. Environ. Stud. 15: 827-832.
  35. Buresh RJ, Patrick WH.1978. Nitrate reduction to ammonium in anaerobic soil. Soil Sci. Soc. Am. J. 42: 913-918. https://doi.org/10.2136/sssaj1978.03615995004200060017x
  36. Burgin AJ, Hamilton SK. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5: 89-96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
  37. Chatterjee D, Thakur AR, Raychaudhuri S. 2013. Draft genome sequence of ammonia-Producing Acinetobacter sp. Strain MCC2139 from Dairy Effluent. Genome Annouc. 1: 410-413.
  38. Sharma NK, Goswami B, Gajjar B, Jain C, Soni D, Patel K. 2011. Utilization of Amul Dairy effluent for agriculture practices. Int. J. Environ. Sci. 2: 22-32.

피인용 문헌

  1. A novel strategy for microbial conversion of dairy wastewater into biofertilizer vol.293, 2019, https://doi.org/10.1016/j.jclepro.2021.126051
  2. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production vol.286, 2021, https://doi.org/10.1016/j.jenvman.2021.112196
  3. Bacterial consortium based petrochemical wastewater treatment: from strain isolation to industrial effluent treatment vol.7, 2022, https://doi.org/10.1016/j.envadv.2021.100132