DOI QR코드

DOI QR Code

독도 자생식물 번행초로부터 분리한 바실러스 속 식물생장촉진근권 세균에 의한 식물병 저항성 유도

Induced Systemic Resistance in plants by Bacillus sp. Isolated from Dok-do Islands

  • Kim, Seung-Kun (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group) ;
  • Son, Jin-Soo (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group) ;
  • Kwon, Duck-Kee (Department of Biology Education, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group)
  • 투고 : 2019.02.07
  • 심사 : 2019.05.20
  • 발행 : 2019.12.28

초록

본 연구는 독도에서 서식하는 자생식물인 번행초와 번행초의 근권에서 미생물들을 분리하였다. 분리 균의 식물생장 촉진 특성을 확인하였으며, 식물 병에 대한 저항성을 유도효과를 가진 균 중 범용성이 좋은 바실러스 속 세균에 초점을 두어 실험을 진행하였다. 번행초의 분리 균들은 근권환경에 52종, 식물체 내생 환경에서 51종, 식물체 표면에서 35종으로 총 138종의 분리 균이 확보되었다. 분리 균의 식물생장촉진특징을 확인하여 보기 위하여, 식물 성장에 필요한 난용성인 가용화와 철의 결합에 사용되는 siderophore의 생산능, 식물생장호르몬인 옥신 생산능을 확인하여 각각의 비율을 확인하였고, 3가지 특성을 모두 가진 균의 비율을 확인하였다. 또한 분리 균을 담배에 처리하여 병원균에 대한 유도전신저항성을 확인하였고, 그 중 효과가 좋았던 균 35종을 부분 동정한 결과, 바실러스 속은 KUDC6588, KUDC6597, KUDC6606, KUDC6614, KUDC6615, KUDC6619로 나타났다. 6종의 바실러스 속 세균들은 모두 저항성 향상에 좋은 효과를 보였으며, 특히 KUDC6619의 경우 현재 화학항생물질인 BTH와도 비슷한 효과를 보였다. KUDC6619는 대표적인 식용작물인 고추에서도 유도전신저항성의 향상에 대한 좋은 결과를 나타내었다. 따라서 사람과 동물에 대한 안전성, 식물 병원성 등 다양한 테스트를 진행한 후, 안정성이 확보된다면, KUDC6619는 식물의 ISR을 야기하는 생물농약 으로서의 높은 산업적 가치가 있을 것으로 보인다.

In September 2017, the rhizospheric soil of Tetragonia tetragonoides (Pall.) Kuntze was further sampled. One hundred and thirty eight species of microorganisms were isolated from the soil. Indole-3-acetic acid (IAA) production, siderophore production, and phosphate degradation were examined in order to confirm bacterial growth from isolated microorganisms. As a result, most strains were able to produce auxins or siderophores and to solubilize phosphate. In addition, 138 isolated strains were treated with tobacco extract and conferred pathogen resistance to host plants upon treatment. As a result, 35 strains that were able to reduce pathophysiology by more the 60% were selected. Among them, 6 strains with high induced systemic resistance (ISR) activity were found. All of these strains belong to the genus Bacillus according to the 16S rDNA sequence analysis. Bacillus aryabhattai KUDC6619 showed outstanding effects with reduced infection in tobacco and pepper plants. Probably, these Bacillus species play a beneficial role by association with T. tetragonoides for its survival in the harsh conditions found on the island of Dokdo.

키워드

참고문헌

  1. Walker TS, Bais HP, Greotewold E, Vivanco, JM. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132: 44-51. https://doi.org/10.1104/pp.102.019661
  2. Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559-1570. https://doi.org/10.1007/s10529-010-0347-0
  3. Hayal R, Ali S, Amara U. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60: 579-598. https://doi.org/10.1007/s13213-010-0117-1
  4. Lebuhn M, Heulin T, Hartmann A. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334. https://doi.org/10.1016/S0168-6496(97)00007-X
  5. Karthikeyan AS, Raghothama KG. 2005. Phosphate acquisition. Plant Soil 274: 37-49. https://doi.org/10.1007/s11104-004-2005-6
  6. Weinberg ED. 1978. Iron and infection. Microbiol. Rev. 42: 45-66. https://doi.org/10.1128/mr.42.1.45-66.1978
  7. Bienfait HF. 1989. Prevention of stress in iron metabolism of plant. Acta Bot. Neerl. 38: 105-129. https://doi.org/10.1111/j.1438-8677.1989.tb02035.x
  8. Loper JE, Buyer JS. 1991. Siderophore in microbial interactions on plant surfaces. MPMI 4: 5-13. https://doi.org/10.1094/MPMI-4-005
  9. Beare PA, For RJ, Martin LW, Lamont IL. 2003. Siderophoremediated cell signaling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol. Microbiol. 47: 195-207. https://doi.org/10.1046/j.1365-2958.2003.03288.x
  10. Ross AF. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358. https://doi.org/10.1016/0042-6822(61)90319-1
  11. Wei G, Kloepper JW, Tuzun S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. https://doi.org/10.1094/Phyto-81-1508
  12. Schneider M, Schweizer P, Meuwly P, Métraux JP. 1996. Systemic Acquired Resistance in Plants. Int. Rev. Cytol. 168: 303-340. https://doi.org/10.1016/S0074-7696(08)60887-6
  13. Phi QT, Park YM, Seul KJ, Ryu CM, Park SH, Kim JG, et al. 2010. Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J. Microbiol. Biotechnol. 20: 1605-1613. https://doi.org/10.4014/jmb.1007.07014
  14. Bakker PAHM, Ran LX, Pieterse CMJ, Van LC. 2003. Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant disease. Can. J. Plant Pathol. 25: 5-9. https://doi.org/10.1080/07060660309507043
  15. Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ. 2002. Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol. Mol. Plant Pathol. 61: 289-298. https://doi.org/10.1006/pmpp.2003.0443
  16. Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis. 84: 779-784. https://doi.org/10.1094/PDIS.2000.84.7.779
  17. Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50. https://doi.org/10.1023/a:1008732400383
  18. Donk PJ. 1920. A highly resistant thermophilic organism. Bacteriol. 5: 373-374. https://doi.org/10.1128/jb.5.4.373-374.1920
  19. Wayne LN, Nobuo M, Gerda H, HenryJM, Peter S. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  20. Bae SG, Choo CO. 2016. Geological heritage of the Ulleungdo. Dokdo National Geopark and its management system. J. Geol. Soc. Korea 52: 739-761. https://doi.org/10.14770/jgsk.2016.52.5.739
  21. Hwang SI, Park KG. 2008. In: Research Institute for Ulleungdo & Dokdo Islands. pp. 54-111. Kyungpook National University, editors. Nature of Dokdo. Daegu: Kyungpook University Press.
  22. Lee W, Yoon JS, Park JH. 2017. Story of Enviroment at Dokdo Island, plant. pp. 6-59. Kyungpook National University, editors. Nature of Dokdo. Daegu: Kyungpook University Press.
  23. Glickmann E, Dessaux Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796. https://doi.org/10.1128/aem.61.2.793-796.1995
  24. Schwyn B, Neilands JB. 1987. University chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 46-52.
  25. Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265-270. https://doi.org/10.1016/S0378-1097(98)00555-2