DOI QR코드

DOI QR Code

CO 내성을 갖는 Clostridium sp. AWRP 돌연변이주의 분리 및 이를 이용한 합성가스로부터의 에탄올 생산 연구

Enhanced Alcohol Production from Synthesis Gas Using a CO-resistant Mutant of Clostridium sp. AWRP

  • 권수재 (한국해양과학기술원 해양생명공학연구센터) ;
  • 이종민 (한국해양과학기술원 해양생명공학연구센터) ;
  • 이현숙 (한국해양과학기술원 해양생명공학연구센터)
  • Kwon, Soo Jae (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Joungmin (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology) ;
  • Lee, Hyun Sook (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology)
  • 투고 : 2019.06.10
  • 심사 : 2019.07.12
  • 발행 : 2019.12.28

초록

In this study, the carbon monoxide (CO)-fermenting acetogen, Clostridium sp. AWRP was subjected to chemical mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) to generate a CO-resistant mutant. Among the 26 colonies obtained, the highest alcohol production was observed in one isolate, named C1. Compared to the wild-type strain, the C1 strain exhibited 1.5- and 3.4-fold higher CO consumption rate and alcohol selectivity, respectively. The total CO consumption of strain C1 could be further enhanced by increasing the content of metal ions, such as nickel and iron. The highest ethanol titer (5.7 g/l) was achieved by 5-fold increase in the iron concentration.

키워드

참고문헌

  1. Lee Y, Cho IJ, Choi SY, Lee SY. 2019. Systems metabolic engineering strategies for non-natural microbial polyester production. Biotechnol. J. 14: e1800426.
  2. Liao JC, Mi L, Pontrelli S, Luo S. 2016. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14: 288-304. https://doi.org/10.1038/nrmicro.2016.32
  3. Bengelsdorf FR, Straub M, Durre P. 2013. Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 34: 1639-1651. https://doi.org/10.1080/09593330.2013.827747
  4. Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of $CO_2$ fixation. Biochim. Biophys. Acta. 1784: 1873-1898. https://doi.org/10.1016/j.bbapap.2008.08.012
  5. Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, et al. 2018. Bacterial anaerobic synthesis gas (Syngas) and $CO_2$+$H_2$ fermentation. Adv. Appl. Microbiol. 103: 143-221. https://doi.org/10.1016/bs.aambs.2018.01.002
  6. Liew F, Henstra AM, Kpke M, Winzer K, Simpson SD, Minton NP. 2017. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40: 104-114. https://doi.org/10.1016/j.ymben.2017.01.007
  7. Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, et al. 2016. $CO_2$ fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat. Commun. 7: 12800. https://doi.org/10.1038/ncomms12800
  8. Park S, Yasin M, Jeong J, Cha M, Kang H, Jang N, et al. 2017. Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation. Bioresour. Technol. 245: 560-566. https://doi.org/10.1016/j.biortech.2017.08.132
  9. Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, et al. 2016. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol. 7: 1036.
  10. Mayer A, Schadler T, Trunz S, Stelzer T, Weuster-Botz D. 2018. Carbon monoxide conversion with Clostridium aceticum. Biotechnol. Bioeng. 115: 2740-2750. https://doi.org/10.1002/bit.26808
  11. Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK. 2013. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195: 4373-86. https://doi.org/10.1128/JB.00678-13
  12. Lee J, Lee JW, Chae CG, Kwon SJ, Kim YJ, Lee JH, et al. 2019. Domestication of the novel alcohologenic acetogen Clostridium sp. AWRP: from isolation to characterization for syngas fermentation. Biotechnol. Biofuels. 12: 228. https://doi.org/10.1186/s13068-019-1570-0
  13. Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886. https://doi.org/10.1016/S0021-9258(18)67912-8
  14. Connor MR, Cann AF, Liao JC. 2010. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and twophase fermentation. Appl. Microbiol. Biotechnol. 86: 1155-1164. https://doi.org/10.1007/s00253-009-2401-1
  15. Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, et al. 2013. CO-dependent $H_2$ production by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79: 2048-2053. https://doi.org/10.1128/AEM.03298-12
  16. Tanner RS, Miller LM, Yang D. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43: 232-236. https://doi.org/10.1099/00207713-43-2-232
  17. Ragsdale SW. 2008. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. N Y Acad. Sci. 1125: 129-136. https://doi.org/10.1196/annals.1419.015
  18. Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D. 2010. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol. 101: 8784-8789. https://doi.org/10.1016/j.biortech.2010.06.072
  19. Saxena J, Tanner RS. 2011. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 38: 513-521. https://doi.org/10.1007/s10295-010-0794-6
  20. Abubackar HN, Veiga MC, Kennes C. 2015. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour. Technol. 186: 122-127. https://doi.org/10.1016/j.biortech.2015.02.113
  21. Mukund S, Adams MW. 1991. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266: 14208-14216. https://doi.org/10.1016/S0021-9258(18)98669-2

피인용 문헌

  1. Screening of Gas Substrate and Medium Effects on 2,3-Butanediol Production with C. ljungdahlii and C. autoethanogenum Aided by Improved Autotrophic Cultivation Technique vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040264