Browse > Article
http://dx.doi.org/10.4014/mbl.1906.06004

Enhanced Alcohol Production from Synthesis Gas Using a CO-resistant Mutant of Clostridium sp. AWRP  

Kwon, Soo Jae (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology)
Lee, Joungmin (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology)
Lee, Hyun Sook (Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.4, 2019 , pp. 581-584 More about this Journal
Abstract
In this study, the carbon monoxide (CO)-fermenting acetogen, Clostridium sp. AWRP was subjected to chemical mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (NTG) to generate a CO-resistant mutant. Among the 26 colonies obtained, the highest alcohol production was observed in one isolate, named C1. Compared to the wild-type strain, the C1 strain exhibited 1.5- and 3.4-fold higher CO consumption rate and alcohol selectivity, respectively. The total CO consumption of strain C1 could be further enhanced by increasing the content of metal ions, such as nickel and iron. The highest ethanol titer (5.7 g/l) was achieved by 5-fold increase in the iron concentration.
Keywords
Acetogen; synthesis gas; random mutagenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mukund S, Adams MW. 1991. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266: 14208-14216.   DOI
2 Lee Y, Cho IJ, Choi SY, Lee SY. 2019. Systems metabolic engineering strategies for non-natural microbial polyester production. Biotechnol. J. 14: e1800426.
3 Liao JC, Mi L, Pontrelli S, Luo S. 2016. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14: 288-304.   DOI
4 Bengelsdorf FR, Straub M, Durre P. 2013. Bacterial synthesis gas (syngas) fermentation. Environ. Technol. 34: 1639-1651.   DOI
5 Ragsdale SW, Pierce E. 2008. Acetogenesis and the Wood-Ljungdahl pathway of $CO_2$ fixation. Biochim. Biophys. Acta. 1784: 1873-1898.   DOI
6 Park S, Yasin M, Jeong J, Cha M, Kang H, Jang N, et al. 2017. Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation. Bioresour. Technol. 245: 560-566.   DOI
7 Bengelsdorf FR, Beck MH, Erz C, Hoffmeister S, Karl MM, Riegler P, et al. 2018. Bacterial anaerobic synthesis gas (Syngas) and $CO_2$+$H_2$ fermentation. Adv. Appl. Microbiol. 103: 143-221.   DOI
8 Liew F, Henstra AM, Kpke M, Winzer K, Simpson SD, Minton NP. 2017. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40: 104-114.   DOI
9 Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, et al. 2016. $CO_2$ fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nat. Commun. 7: 12800.   DOI
10 Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, et al. 2016. Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis. Front Microbiol. 7: 1036.
11 Mayer A, Schadler T, Trunz S, Stelzer T, Weuster-Botz D. 2018. Carbon monoxide conversion with Clostridium aceticum. Biotechnol. Bioeng. 115: 2740-2750.   DOI
12 Wang S, Huang H, Kahnt J, Mueller AP, Kopke M, Thauer RK. 2013. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J. Bacteriol. 195: 4373-86.   DOI
13 Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, et al. 2013. CO-dependent $H_2$ production by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79: 2048-2053.   DOI
14 Lee J, Lee JW, Chae CG, Kwon SJ, Kim YJ, Lee JH, et al. 2019. Domestication of the novel alcohologenic acetogen Clostridium sp. AWRP: from isolation to characterization for syngas fermentation. Biotechnol. Biofuels. 12: 228.   DOI
15 Wolin EA, Wolin MJ, Wolfe RS. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238: 2882-2886.   DOI
16 Connor MR, Cann AF, Liao JC. 2010. 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and twophase fermentation. Appl. Microbiol. Biotechnol. 86: 1155-1164.   DOI
17 Tanner RS, Miller LM, Yang D. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43: 232-236.   DOI
18 Ragsdale SW. 2008. Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. N Y Acad. Sci. 1125: 129-136.   DOI
19 Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D. 2010. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol. 101: 8784-8789.   DOI
20 Saxena J, Tanner RS. 2011. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 38: 513-521.   DOI
21 Abubackar HN, Veiga MC, Kennes C. 2015. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour. Technol. 186: 122-127.   DOI