• Title/Summary/Keyword: Multispecies

Search Result 30, Processing Time 0.025 seconds

A periodontitis-associated multispecies model of an oral biofilm

  • Park, Jong Hwa;Lee, Jae-Kwan;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • Purpose: While single-species biofilms have been studied extensively, we know notably little regarding multispecies biofilms and their interactions. The purpose of this study was to develop and evaluate an in vitro multispecies dental biofilm model that aimed to mimic the environment of chronic periodontitis. Methods: Streptococcus gordonii KN1, Fusobacterium nucleatum ATCC23726, Aggregatibacter actinomycetemcomitans ATCC33384, and Porphyromonas gingivalis ATCC33277 were used for this experiment. The biofilms were grown on 12-well plates with a round glass slip (12 mm in diameter) with a supply of fresh medium. Four different single-species biofilms and multispecies biofilms with the four bacterial strains listed above were prepared. The biofilms were examined with a confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM). The minimum inhibitory concentrations (MIC) for four different planktonic single-species and multispecies bacteria were determined. The MICs of doxycycline and chlorhexidine for four different single-species biofilms and a multispecies biofilm were also determined. Results: The CLSM and SEM examination revealed that the growth pattern of the multispecies biofilm was similar to those of single-species biofilms. However, the multispecies biofilm became thicker than the single-species biofilms, and networks between bacteria were formed. The MICs of doxycycline and chlorhexidine were higher in the biofilm state than in the planktonic bacteria. The MIC of doxycycline for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis, F. nucleatum, or A. actinomycetemcomitans. The MIC of chlorhexidine for the multispecies biofilm was higher than were those for the single-species biofilms of P. gingivalis or F. nucleatum. Conclusions: To mimic the natural dental biofilm, a multispecies biofilm composed of four bacterial species was grown. The 24-hour multispecies biofilm may be useful as a laboratory dental biofilm model system.

Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System

  • Reuben, Rine Christopher;Roy, Pravas Chandra;Sarkar, Shovon Lal;Ha, Sang-Do;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.473-486
    • /
    • 2019
  • In the aquatic environment, microorganisms are predominantly organized as biofilms. Biofilms are formed by the aggregation of microbial cells and are surrounded by a matrix of extracellular polymeric substances (EPS) secreted by the microbial cells. Biofilms are attached to various surfaces, such as the living tissues, indwelling medical devices, and piping of the industrial potable water system. Biofilms formed from a single species has been extensively studied. However, there is an increased research focus on multispecies biofilms in recent years. It is important to assess the microbial mechanisms underlying the regulation of multispecies biofilm formation to determine the drinking water microbial composition. These mechanisms contribute to the predominance of the best-adapted species in an aquatic environment. This review focuses on the interactions in the multispecies biofilms, such as coaggregation, co-metabolism, cross-species protection, jamming of quorum sensing, lateral gene transfer, synergism, and antagonism. Further, this review explores the dynamics and the factors favoring biofilm formation and pathogen transmission within the drinking water distribution systems. The understanding of the physiology and biodiversity of microbial species in the biofilm may aid in the development of novel biofilm control and drinking water disinfection processes.

Epifluorescence Microscopy with Image Analysis as a Promising Method for Multispecies Biofilm Quantification

  • Ji Won Lee;So-Yeon Jeong;Tae Gwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.348-355
    • /
    • 2023
  • Epifluorescence microscopy with image analysis was evaluated as a biofilm quantification method (i.e., quantification of surface area colonized by biofilms), in comparison with crystal violet (CV) staining. We performed different experiments to generate multispecies biofilms with natural and artificial bacterial assemblages. First, four species were inoculated daily in 16 different sequences to form biofilms (surface colonization, 0.1%-56.6%). Second, a 9-species assemblage was allowed to form biofilms under 10 acylase treatment episodes (33.8%-55.6%). The two methods comparably measured the quantitative variation in biofilms, exhibiting a strong positive relationship (R2 ≥ 0.7). Moreover, the two methods exhibited similar levels of variation coefficients. Finally, six synthetic and two natural consortia were allowed to form biofilms for 14 days, and their temporal dynamics were monitored. The two methods were comparable in quantifying four biofilms colonizing ≥18.7% (R2 ≥ 0.64), but not for the other biofilms colonizing ≤ 3.7% (R2 ≤ 0.25). In addition, the two methods exhibited comparable coefficients of variation in the four biofilms. Microscopy and CV staining comparably measured the quantitative variation of biofilms, exhibiting a strongly positive relationship, although microscopy cannot appropriately quantify the biofilms below the threshold colonization. Microscopy with image analysis is a promising approach for easily and rapidly estimating absolute quantity of multispecies biofilms.

A Strategy for Optimal Production Management of Multi-Species Fisheries using a Portfolio Approach (포트폴리오 기법을 이용한 복수어종의 최적 생산관리 전략)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.1
    • /
    • pp.109-119
    • /
    • 2014
  • This study aimed to examine the applicability of a portfolio approach to the ecosystem-based fisheries management targeting the large purse seine fishery. Most fisheries are targeting multispecies and species are biologically and technically interacted each other. It enables a portfolio approach to be applied to find optimal production of each species through expected returns and risk analyses. Under specific assumptions on the harvest quota by species, efficient risk-return frontiers were generated and they showed a combination of optimal production level. Comparisons between portfolio and actual production provided a useful information for targeting strategy and management. Results also showed the possibility of effective multispecies fisheries management by imposing constraints on each species such as total allowable catch quotas.

Spatial moment analysis of multispecies contaminant transport in porous media

  • Natarajan, N.;Kumar, G. Suresh
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.76-83
    • /
    • 2018
  • Spatial moment analysis has been performed on the concentration of the first species in a multispecies solute transport in porous media. Finite difference numerical technique was used in obtaining the solute concentration. A constant continuous source of contaminant was injected at the inlet of the domain. Results suggest that the decaying of solute mass increases as the magnitude of mean fluid velocity increases. The dispersion coefficient is highly time dependent under decaying of solutes with a complex behavior of mixing of solutes. The solute mobility and mixing varies non-linearly with time during its initial period, while the same ceases with higher decay rates of the first species much faster.

Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm (Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과)

  • Kim, Myunghwan;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • The purpose of this study is to investigate the antibacterial effects of indocyanine green (ICG) and near-infrared diode lasers on multispecies biofilms. Multispecies biofilms of Streptococcus mutans, Lactobacillus casei and Candida albicans were treated with different irradiation time using photosensitizer ICG and 808 nm near-infrared diode laser. Colony forming unit (CFU) was measured, and qualitative evaluation of biofilm was performed with confocal laser scanning microscopy (CLSM). Temperature measurement was conducted to evaluate photothermal effect. In the groups using ICG and diode laser, reduction in CFU was statistically significant, but the difference in antibacterial effect on L. casei and C. albicans with irradiation time was not significant, and similar results were confirmed with CLSM. Groups with ICG and diode laser showed higher temperature elevation than groups without ICG, and results of measured temperature were similar to the range of hyperthermia. In conclusion, ICG and near-infrared diode laser showed antibacterial effects on multispecies biofilms, but studies on protocol are necessary for clinical application.

Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness

  • Lee, Keehoon;Yoon, Sang Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1053-1064
    • /
    • 2017
  • A biofilm is a community of microbes that typically inhabit on surfaces and are encased in an extracellular matrix. Biofilms display very dissimilar characteristics to their planktonic counterparts. Biofilms are ubiquitous in the environment and influence our lives tremendously in both positive and negative ways. Pseudomonas aeruginosa is a bacterium known to produce robust biofilms. P. aeruginosa biofilms cause severe problems in immunocompromised patients, including those with cystic fibrosis or wound infection. Moreover, the unique biofilm properties further complicate the eradication of the biofilm infection, leading to the development of chronic infections. In this review, we discuss the history of biofilm research and general characteristics of bacterial biofilms. Then, distinct features pertaining to each stage of P. aeruginosa biofilm development are highlighted. Furthermore, infections caused by biofilms on their own or in association with other bacterial species (i.e., multispecies biofilms) are discussed in detail.

Mechanisms of Adsorption with Respect to Sulfate Mobility in Multispecies Systems of Soils (토양의 다중이온체계내에서의 황산이온의 이동을 고려한 흡착기작)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • The mobility of sulfate in soils defends on several factors including redox potential, soil mineralogy, pH, and the presence of other anions that compete for sorption sites with sulfate. The proposed model of adsorption mechanism for sulfate postulated that reaction is between anions in solution and charged surfaces of soil particles. With appropriate choice of parameters obtained from the adsorption-desorption experiments, the equation of transport model adapt an empirical approach, capable of handling most general equilibrium adsorption isotherms, suitable for multispecies systems.

  • PDF

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.

Adhesion of biofilm, surface characteristics, and mechanical properties of antimicrobial denture base resin

  • Ana Beatriz Vilela Teixeira;Mariana Lima da Costa Valente;Joao Pedro Nunes Sessa;Bruna Gubitoso;Marco Antonio Schiavon;Andrea Candido dos Reis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.80-92
    • /
    • 2023
  • PURPOSE. This study incorporated the nanomaterial, nanostructured silver vanadate decorated with silver nanoparticles (AgVO3), into heat-cured resin (HT) at concentrations of 2.5%, 5%, and 10% and compared the adhesion of multispecies biofilms, surface characteristics, and mechanical properties with conventional heat-cured (HT 0%) and printed resins. MATERIALS AND METHODS. AgVO3 was incorporated in mass into HT powder. A denture base resin was used to obtain printed samples. Adhesion of a multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans was evaluated by colony-forming units per milliliter (CFU/mL) and metabolic activity. Wettability, roughness, and scanning electron microscopy (SEM) were used to assess the physical characteristics of the surface. The mechanical properties of flexural strength and elastic modulus were tested. RESULTS. HT 10%-AgVO3 showed efficacy against S. mutans; however, it favored C. albicans CFU/mL (P < .05). The printed resin showed a higher metabolically active biofilm than HT 0% (P < .05). There was no difference in wettability or roughness between groups (P > .05). Irregularities on the printed resin surface and pores in HT 5%-AgVO3 were observed by SEM. HT 0% showed the highest flexural strength, and the resins incorporated with AgVO3 had the highest elastic modulus (P < .05). CONCLUSION. The incorporation of 10% AgVO3 into heat-cured resin provided antimicrobial activity against S. mutans in a multispecies biofilm did not affect the roughness or wettability but reduced flexural strength and increased elastic modulus. Printed resin showed higher irregularity, an active biofilm, and lower flexural strength and elastic modulus than heat-cured resin.