DOI QR코드

DOI QR Code

Carboxy-Terminal Region of a Thermostable CITase from Thermoanaerobacter thermocopriae Has the Ability to Produce Long Isomaltooligosaccharides

  • Jeong, Woo Soo (Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Yu-Ri (Department of Food Science and Technology, Chonnam National University) ;
  • Hong, Seong-Jin (Department of Food Science and Technology, Chonnam National University) ;
  • Choi, Su-Jeong (Department of Food Science and Technology, Chonnam National University) ;
  • Choi, Ji-Ho (Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Shin-Young (Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Woo, Eui-Jeon (Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Kim, Young Min (Department of Food Science and Technology, Chonnam National University) ;
  • Park, Bo-Ram (Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2019.10.13
  • Accepted : 2019.11.26
  • Published : 2019.12.28

Abstract

Isomaltooligosaccharides (IMOs) have good prebiotic effects, and long IMOs (LIMOs) with a degree of polymerization (DP) of 7 or above show improved effects. However, they are not yet commercially available, and require costly enzymes and processes for production. The N-terminal region of the thermostable Thermoanaerobacter thermocopriae cycloisomaltooligosaccharide glucanotransferase (TtCITase) shows cyclic isomaltooligosaccharide (CI)-producing activity owing to a catalytic domain of glycoside hydrolase (GH) family 66 and carbohydrate-binding module (CBM) 35. In the present study, we elucidated the activity of the C-terminal region of TtCITase (TtCITase-C; Met740-Phe1,559), including a CBM35-like region and the GH family 15 domain. The domain was successfully cloned, expressed, and purified as a single protein with a molecular mass of 115 kDa. TtCITase-C exhibited optimal activity at 40℃ and pH 5.5, and retained 100% activity at pH 5.5 after 18-h incubation. TtCITase-C synthesized α-1,6 glucosyl products with over seven degrees of polymerization (DP) by an α-1,6 glucosyl transfer reaction from maltopentaose, isomaltopentaose, or commercialized maltodextrins as substrates. These results indicate that TtCITase-C could be used for the production of α-1,6 glucosyl oligosaccharides with over DP7 (LIMOs) in a more cost-effective manner, without requiring cyclodextran.

Keywords

References

  1. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
  2. Crittenden RG, Playne MJ. 1996. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Technol. 7: 353-361. https://doi.org/10.1016/S0924-2244(96)10038-8
  3. Kim Y-M, Seo M-Y, Kang H-K, Atsuo K, Kim D. 2009. Construction of a fusion enzyme of dextransucrase and dextranase: application for one-step synthesis of isomaltooligosaccharides. Enzyme Microb. Technol. 44: 159-164. https://doi.org/10.1016/j.enzmictec.2008.10.007
  4. Sadahiro J, Mori H, Saburi W, Okuyama M, Kimura A. 2015. Extracellular and cell-associated forms of Gluconobacter oxydans dextran dextrinase change their localization depending on the cell growth. Biochem. Biophys. Res. Commun. 456: 500-505. https://doi.org/10.1016/j.bbrc.2014.11.115
  5. Debnam ES, Denholm EE, Grimble GK. 1998. Acute and chronic exposure of rat intestinal mucosa to dextran promotes SGLT1-mediated glucose transport. Eur. J. Clin. Invest. 28: 651-658. https://doi.org/10.1046/j.1365-2362.1998.00352.x
  6. Kaneko T, Kohmoto T, Kikuchi H, Shiota M, Iino H, Mitsuoka T. 1994. Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobactcria. Biosci. Biotechnol. Biochem. 58: 2288-2290. https://doi.org/10.1271/bbb.58.2288
  7. Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Okuyama M, et al. 2013. A novel mechanism for the promotion of quercetin glycoside absorption by megalo ${\alpha}$-1,6-glucosaccharide in the rat small intestine. Food Chem. 136: 293-296. https://doi.org/10.1016/j.foodchem.2012.08.028
  8. Hara H, Kume S, Iizuka T, Fujimoto Y, Kimura A. 2018. Enzymatically synthesized megalo-type isomaltosaccharides enhance the barrier function of the tight junction in the intestinal epithelium. Biosci. Biotechnol. Biochem. 82: 629-635. https://doi.org/10.1080/09168451.2017.1398065
  9. Joe GH, Andoh M, Shinoki A, Lang W, Kumagai Y, Sadahiro J, et al. 2016. Megalo-type ${\alpha}$-1,6-glucosaccharides induce production of tumor necrosis factor ${\alpha}$ in primary macrophages via toll-like receptor 4 signaling. Biomed. Res. 37: 179-186. https://doi.org/10.2220/biomedres.37.179
  10. Oguma T, Horiuchi T, Kobayashi M. 1993. Novel cyclic dextrins, cycloisomaltooligosaccharides, from Bacillus s p . T-3040 culture. Biosci. Biotechnol. Biochem. 57: 1225-1227. https://doi.org/10.1271/bbb.57.1225
  11. Funane K, Terasawa K, Mizuno Y, Ono H, Miyagi T, Gibu S, et al. 2007. A novel cyclic isomaltooligosaccharide (cycloisomaltodecaose, CI-10) produced by Bacillus circulans T-3040 displays remarkable inclusion ability compared with cyclodextrins. J. Biotechnol. 130: 188-192. https://doi.org/10.1016/j.jbiotec.2007.03.009
  12. Funane K, Terasawa K, Mizuno Y, Ono H, Gibu S, Tokashiki T, et al. 2008. Isolation of Bacillus and Paenibacillus bacterial strains that produce large molecules of cyclic isomaltooligosaccharides. Biosci. Biotechnol. Biochem. 72: 3277- 3280. https://doi.org/10.1271/bbb.80384
  13. Kobayashi M, Funane K, Oguma T. 1995. Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides. Biosci. Biotechnol. Biochem. 59: 1861-1865. https://doi.org/10.1271/bbb.59.1861
  14. Suzuki R, Terasawa K, Kimura K, Fujimoto Z, Momma M, Kobayashi M, et al. 2012. Biochemical characterization of a novel cycloisomaltooligosaccharide glucanotransferase from Paenibacillus sp. 598K. Biochim. Biophys. Acta 1824: 919-924. https://doi.org/10.1016/j.bbapap.2012.04.001
  15. Oguma T, Kitao S, Kobayashi M. 2014. Purification and characterization of cycloisomaltooligosaccharide glucanotransferase and cloning of cit from Bacillus circulans U-155. J. Appl. Glycosci. 61: 93-97. https://doi.org/10.5458/jag.jag.JAG-2013_017
  16. Yang S-J, Ko J-A, Kim H-S, Jo M-H, Lee H-N, Park B-R, et al. 2018. Biochemical characterization of alkaliphilic cyclodextran glucanotransferase from an alkaliphilic bacterium, Paenibacillus daejeonensis. J. Microbiol. Biotechnol. 28: 2029-2035. https://doi.org/10.4014/jmb.1810.10007
  17. Yang S-J, Choi S-J, Park B-R, Kim Y-M. 2019. Thermostable CITase from Thermoanaerobacter thermocopriae shows negative cooperativity. Biotechnol. Lett. 41: 625-632. https://doi.org/10.1007/s10529-019-02666-6
  18. Funane K, Ichinose H, Araki M, Suzuki R, Kimura K, Fujimoto Z, et al. 2014. Evidence for cycloisomaltooligosaccharide production from starch by Bacillus circulans T-3040. Appl. Microbiol. Biotechnol. 98: 3947-3954. https://doi.org/10.1007/s00253-014-5515-z
  19. Ichinose H, Suzuki R, Miyazaki T, Kimura K, Momma M, Suzuki N, et al. 2017. Paenibacillus sp. 598K 6-${\alpha}$- glucosyltransferase is essential for cycloisomaltooligosaccharide synthesis from ${\alpha}$-(1 $\rightarrow$ 4)-glucan. Appl. Microbiol. Biotechnol. 101: 4115-4128. https://doi.org/10.1007/s00253-017-8174-z
  20. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  21. Mao X, Wang S, Kan F, Wei D, Li F. 2012. A novel dextran dextrinase from Gluconobacter oxydans DSM-2003: Purification and properties. Appl. Biochem. Biotechnol. 168: 1256-1264. https://doi.org/10.1007/s12010-012-9854-x
  22. Suzuki N, Fujimoto Z, Kim YM, Momma M, Kishine N, Suzuki R, et al. 2014. Structural elucidation of the cyclization mechanism of ${\alpha}$-1,6-glucan by Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase. J. Biol. Chem. 289: 12040-12051. https://doi.org/10.1074/jbc.M114.547992
  23. Mitchell F, Miles S, Neres J, Bichenkova E, Bryce R. 2010. Tryptophan as a molecular shovel in the glycosyl transfer activity of Trypanosoma cruzi trans-sialidase. Biophys. J. 98: L38. https://doi.org/10.1016/j.bpj.2010.01.006
  24. Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko JA, et al. 2015. Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J. Biochem. 159: 331-339. https://doi.org/10.1093/jb/mvv104
  25. Ota M, Okamoto T, Wakabayashi H. 2009. Action of transglucosidase from Aspergillus niger on maltoheptaose and [U-13C] maltose. Carbohydr. Res. 344: 460-465. https://doi.org/10.1016/j.carres.2008.12.004
  26. Yamamoto K, Yoshikawa K, Okada S. 1993. Structure of dextran synthesized by dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 57: 1450-1453. https://doi.org/10.1271/bbb.57.1450

Cited by

  1. Synthesis and physicochemical properties of polysaccharides by Gluconobacter oxydans with glycosyltransferase activity vol.28, pp.3, 2019, https://doi.org/10.11002/kjfp.2021.28.3.391