DOI QR코드

DOI QR Code

Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System

  • Choi, Seunghee (Department of Biological Engineering, Inha University) ;
  • Nah, Hee-Ju (Department of Biological Engineering, Inha University) ;
  • Choi, Sisun (Department of Biological Engineering, Inha University) ;
  • Kim, Eung-Soo (Department of Biological Engineering, Inha University)
  • Received : 2019.09.15
  • Accepted : 2019.10.31
  • Published : 2019.12.28

Abstract

The heterologous expression of the Streptomyces natural product (NP) biosynthetic gene cluster (BGC) has become an attractive strategy for the activation, titer improvement, and refactoring of valuable and cryptic NP BGCs. Previously, a Streptomyces artificial chromosomal vector system, pSBAC, was applied successfully to the precise cloning of large-sized polyketide BGCs, including immunosuppressant tautomycetin and antibiotic pikromycin, which led to stable and comparable production in several heterologous hosts. To further validate the pSBAC system as a generally applicable heterologous expression system, the daptomycin BGC of S. roseosporus was cloned and expressed heterologously in a model Streptomyces cell factory. A 65-kb daptomycin BGC, which belongs to a non-ribosomal polypeptide synthetase (NRPS) family, was cloned precisely into the pSBAC which resulted in 28.9 mg/l of daptomycin and its derivatives in S. coelicolor M511(a daptomycin non-producing heterologous host). These results suggest that a pSBAC-driven heterologous expression strategy is an ideal approach for producing low and inconsistent Streptomyces NRPS-family NPs, such as daptomycin, which are produced low and inconsistent in native host.

Keywords

References

  1. Clardy J, Fischbach MA, Walsh CT. 2006. New antibiotics from bacterial natural products. Nat. Biotechnol. 24: 1541-1550. https://doi.org/10.1038/nbt1266
  2. Jang JP, Han JM, Jung HJ, Osada H, Jang J, Ahn JS. 2018. Anti-Angiogenesis effects induced by Octaminomycins A and B against HUVECs. J. Microbiol. Biotechnol. 28: 1332-1338. https://doi.org/10.4014/jmb.1806.06046
  3. Lam KS. 2007. New aspects of natural products in drug discovery. Trends Microbiol. 15: 279-289. https://doi.org/10.1016/j.tim.2007.04.001
  4. Genilloud O, Gonzalez I, Salazar O, Martin J, Tormo JR, Vicente F. 2011. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 38: 375-389. https://doi.org/10.1007/s10295-010-0882-7
  5. Alshaibani M, Zin NM, Jalil J, Sidik N, Ahmad SJ, Kamal N, et al. 2017. Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with antimicrobial and cytotoxic activities. J. Microbiol. Biotechnol. 27: 1249-1256. https://doi.org/10.4014/jmb.1608.08032
  6. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39: W339-W346. https://doi.org/10.1093/nar/gkr466
  7. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, et al. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531. https://doi.org/10.1038/nbt820
  8. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, ThomsonNR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  9. Winter JM, Behnken S. Hertweck C. 2011. Genomicsinspired discovery of natural products. Curr. Opin. Chem. Biol. 15: 22-31. https://doi.org/10.1016/j.cbpa.2010.10.020
  10. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V, et al. 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. USA 111: 1957-1962. https://doi.org/10.1073/pnas.1319584111
  11. Du D, Wang L, Tian Y, Liu H, Tan H, Niu G. 2015. Genome engineering and direct cloning of antibiotic gene clusters via phage BT1 integrase-mediated site-specific recombination in Streptomyces. Sci. Rep. 5: 8740. https://doi.org/10.1038/srep08740
  12. Liu H, Jiang H, Haltli B, Kulowski K, Muszynska E, Feng X, et al. 2009. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli− Streptomyces artificial chromosome vector, pSBAC. J. Nat. Prod. 72: 389-395. https://doi.org/10.1021/np8006149
  13. Nah HJ. Woo MW, Choi SS, Kim ES. 2015. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 14: 140. https://doi.org/10.1186/s12934-015-0325-2
  14. Pyeon HR, Nah HJ, Kang SH, Choi SS, Kim ES. 2017. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system. Microb. Cell Fact. 16(1): 96. https://doi.org/10.1186/s12934-017-0708-7
  15. Alborn WE Jr., Allen NE, Preston DA. 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. J. Antimicrob. Agents Chemother. 35: 2282-2287. https://doi.org/10.1128/AAC.35.11.2282
  16. Tally FP, DeBruin MF. 2000. Development of daptomycin for gram-positive infections. J. Antimicrob. Chemother. 46: 523-526. https://doi.org/10.1093/jac/46.4.523
  17. Micklefield J. 2004. Daptomycin structure and mechanism of action revealed. Chem. Biol. 11: 887-888. https://doi.org/10.1016/j.chembiol.2004.07.001
  18. Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, et al. 1987. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J. Antibiot. 40: 761-777. https://doi.org/10.7164/antibiotics.40.761
  19. Boeck LD, Fukuda DS, Abbott BJ, Debono M. 1988. Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. J. Antibiot. 41: 1085-1092. https://doi.org/10.7164/antibiotics.41.1085
  20. Huber FM, Pieper RL, Tietz AJ. 1988. The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C. J. Biotechnol. 7: 283-292. https://doi.org/10.1016/0168-1656(88)90040-5
  21. Penn J, Li X, Whiting A, Latif M, Gibson T, Silva CJ, et al. 2006. Heterologous production of daptomycin in Streptomyces lividans. J. Ind. Microbiol. Biotechnol. 33: 121-128. https://doi.org/10.1007/s10295-005-0033-8
  22. Gomez-Escribano JP, Bibb MJ. 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 4: 207-215. https://doi.org/10.1111/j.1751-7915.2010.00219.x
  23. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater and D. A. Hopwood. 2000. Practical Streptomyces genetics. pp. 409. Vol. 3(4). John Innes Foundation, Norwich.
  24. Lee SK, Kim HR, Jin YY, Yang DH, Suh JW. 2016. Improvement of daptomycin production via increased resistance to decanoic acid in Streptomyces roseosporus. J. Biosci. Bioeng. 122: 427-433. https://doi.org/10.1016/j.jbiosc.2016.03.026
  25. Liao G, Liu Q, Xie J. 2013. Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microb. Cell Fact. 12: 19. https://doi.org/10.1186/1475-2859-12-19
  26. Zhang Q, Chen Q, Zhuang S, Chen Z, Wen Y, Li J. 2015. A MarR family transcriptional regulator, DptR3, activates daptomycin biosynthesis and morphological differentiation in Streptomyces roseosporus. Appl. Environ. Microbiol. 81: 3753-3765. https://doi.org/10.1128/AEM.00057-15

Cited by

  1. The Application of Regulatory Cascades in Streptomyces : Yield Enhancement and Metabolite Mining vol.11, 2020, https://doi.org/10.3389/fmicb.2020.00406
  2. Complex natural product production methods and options vol.6, pp.1, 2019, https://doi.org/10.1016/j.synbio.2020.12.001
  3. Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces vol.11, pp.4, 2021, https://doi.org/10.3390/app11041851