References
- Suchodolski JS. 2011. Intestinal microbiota of dogs and cats: a bigger world than we thought. Veterinary Clinics North America Small Animal Practices.
- Honneffer JB, Minamoto Y, Suchodolski JS. 2014. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J. Gastroenterol. 20: 16489-16497. https://doi.org/10.3748/wjg.v20.i44.16489
- Guard BC, Barr JW, Reddivari L, Klemashevich C, Jayaraman A, Steiner JM, et al. 2015. Characterization of microbial dysbiosis and metabolomics changes in dogs with acute diarrhea. PLoS One 10: e0127259. https://doi.org/10.1371/journal.pone.0127259
- Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. 2011. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 76: 301-310. https://doi.org/10.1111/j.1574-6941.2011.01058.x
- Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638. https://doi.org/10.1126/science.1110591
- Suchodolski JS, Camacho J, Steiner JM. 2008. Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol. Ecol. 66: 567-578. https://doi.org/10.1111/j.1574-6941.2008.00521.x
- Suchodolski JS, Markel ME, Garcia-Mazcorro JF, Unterer S, Heilmann RM, Dowd SE, et al. 2012. The fecal microbiome in dogs with acute diarrhea and idiopathic inflammatory bowel disease. PLoS One 7: e51907. https://doi.org/10.1371/journal.pone.0051907
- Gnanandarajah JS, Johnson TJ, Kim HB, Abrahante JE, Lulich JP, Murtaugh MP. 2012. Comparative faecal microbiota of dogs with and without calcium oxalate stones. J. Appl. Microbiol. 113: 745-756. https://doi.org/10.1111/j.1365-2672.2012.05390.x
- Swanson KS, Dowd SE, Suchodolski JS, Middelbos IS, Vester BM, Barry KA, et al. 2011. Phylogenetic and genecentric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 5: 639-649. https://doi.org/10.1038/ismej.2010.162
- Deng P, Swanson KS. 2015. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br. J. Nutr. 113: S6-S17. https://doi.org/10.1017/S0007114514002943
- Simpson JM, Martineau B, Jones WE, Ballam JM, Mackie RI. 2002. Characterization of fecal bacterial populations in canines: effects of age, breed and dietary fiber. Microbial. Ecol. 44: 186-197. https://doi.org/10.1007/s00248-002-0001-z
- Yu Z, Morrison M. 2004. Improved extraction of PCR quality community DNA from digesta and fecal samples. Biotechniques 36: 808-812. https://doi.org/10.2144/04365ST04
- Magoc M, Salzberg S. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Holmes I, Harris K, Quince C. 2012. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One 7: e30126. https://doi.org/10.1371/journal.pone.0030126
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Kim M, Kim J, Kuehn LA, Bono JL, Berry ED, Kalchayanand N, et al. 2014. Investigation of bacterial diversity in the feces of cattle fed different diets. J. Anim. Sci. 92: 683-694. https://doi.org/10.2527/jas.2013-6841
- Omatsu T, Omura M, Katayama Y, Kimura T, Okumura M, Okumura A, et al. 2018. Molecular diversity of the faecal microbiota of toy poodles in Japan. J. Vet. Med. Sci. 80: 749-754. https://doi.org/10.1292/jvms.17-0582
- Hooda S, Minamoto Y, Suchodolski JS, Swanson KS. 2012. Current state of knowledge: the canine gastrointestinal microbiome. Anim. Health Res. Rev. 13: 78-88. https://doi.org/10.1017/S1466252312000059
- Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484. https://doi.org/10.1038/nature07540
- Schmidt M, Unterer S, Suchodolski JS, Honneffer JB, Guard BC, Lidbury JA, et al. 2018. The fecal microbiome and metabolome differs between dogs fed bones and raw food (BARF) diets and dogs fed commercial diets. PLoS One 13(8): e0201279. https://doi.org/10.1371/journal.pone.0201279
- Hand D, Wallis C, Colyer A, Penn CW. 2013. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity. PLoS One 8: e53115. https://doi.org/10.1371/journal.pone.0053115
- Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID, Sidaway JE, et al. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA 108: S4523-S4530. https://doi.org/10.1073/pnas.1006734107
- Zielinska D, Rzepkowska A, Radawska A, Zielinski K. 2015. In vitro screening of selected probiotic properties of Lactobacillus strains isolated from traditional fermented cabbage and cucumber. Curr. Microbiol. 70: 183-194. https://doi.org/10.1007/s00284-014-0699-0
- Hudault S, Lievin V, Bernet-Camard MF, Servin AL. 1997. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microbiol. 63: 513-518. https://doi.org/10.1128/aem.63.2.513-518.1997
- Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65: 4981-4986. https://doi.org/10.1128/aem.65.11.4981-4986.1999
- Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. 2000. Enhancement of natural and aquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167-176. https://doi.org/10.1017/S0007114500000210
- Vitini E, Alvarez S, Medina M, Medici M, de Budeguer, MV, Perdigon G. 2000. Gut mucosal immunostimulation by lactic acid bacteria. Biocell 24: 223-232.
- David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505: 559-563. https://doi.org/10.1038/nature12820
- Fogarty LR, Voytek MA. 2005. Comparison of Bacteroides- Prevotella 16S rRNA genetic markers for fecal samples from different animal species. Appl. Environ. Microbiol. 71: 5999- 6007. https://doi.org/10.1128/AEM.71.10.5999-6007.2005
- Petri RM, Schwaiger T, Penner GB, Beauchemin KA, Forster RJ, McKinnon JJ, et al. 2013. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl. Environ. Microbiol 79: 3744- 3755. https://doi.org/10.1128/AEM.03983-12
- Li F, Guan LL. 2017. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Apply. Environ. Microbiol. 83: e0061-17.
- Misawa N, Kawashima K, Kondo F, Kushima E, Kushima K, Vandamme P. 2002. Isolation and characterization of Campylobacter, Helicobacter, and Anaerobiospirillum strains from a puppy with bloody diarrhea. Vet. Microbiol. 87: 353-364. https://doi.org/10.1016/S0378-1135(02)00086-X
- Shah HN, Olsen I, Bernard K, Finegold SM, Gharbia S, Gupta RS. 2009. Approaches to the study of the systematics of anaerobic, gram-negative, nonsporeforming rods: current status and perspectives. Anaerobe 15: 179-194. https://doi.org/10.1016/j.anaerobe.2009.08.003
- Middelbos IS, Vester Boler BM, Qu A, White BA, Swanson KS, Fahey Jr GC. 2010. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One 5: e9768. https://doi.org/10.1371/journal.pone.0009768
Cited by
- Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study vol.10, pp.3, 2019, https://doi.org/10.3390/ani10030531
- Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity vol.7, pp.2, 2019, https://doi.org/10.3390/vetsci7020044
- Sex Differences in Intestinal Microbial Composition and Function of Hainan Special Wild Boar vol.10, pp.9, 2019, https://doi.org/10.3390/ani10091553
- An application of nuclear magnetic resonance spectroscopy to study faecal canine metabolome vol.20, pp.1, 2021, https://doi.org/10.1080/1828051x.2021.1925602
- Evaluation of the microbiome composition in particulate matter inside and outside of pig houses vol.63, pp.3, 2019, https://doi.org/10.5187/jast.2021.e52
- Comparison of Gut Microbiota of 96 Healthy Dogs by Individual Traits: Breed, Age, and Body Condition Score vol.11, pp.8, 2019, https://doi.org/10.3390/ani11082432
- Age and Giardia intestinalis Infection Impact Canine Gut Microbiota vol.9, pp.9, 2019, https://doi.org/10.3390/microorganisms9091862
- Gut Microbiota in Canine Idiopathic Epilepsy: Effects of Disease and Treatment vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113121