DOI QR코드

DOI QR Code

Isolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4'-Diaponeurosporene and the Assessment of Its Antioxidant Activity

  • Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University) ;
  • Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University) ;
  • Cha, In-Tae (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)
  • Received : 2019.09.05
  • Accepted : 2019.10.13
  • Published : 2019.12.28

Abstract

Carotenoids are organic pigments with antioxidant properties and are widespread in nature. Here, we isolated five microbes, each forming yellow-colored colonies and harboring C30 carotenoid biosynthetic genes (crtM and crtN). Thereafter, Lactobacillus plantarum subsp. plantarum KCCP11226, which showed the highest carotenoid production, was finally selected and the produced pigment was identified as C30 carotenoid 4,4'-diaponeurosporene. This strain exhibited the highest survival rate under oxidative stress and its carotenoid production was also enhanced after exposure to 7 mM H2O2. Moreover, it showed the highest ability to scavenge DPPH free radical. Our results suggested that L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a natural antioxidant, may be a functional probiotic.

Keywords

References

  1. Armstrong GA. 1997. Genetics of eubacterial carotenoid biosynthesis: a colourful tale. Annu. Rev. Microbiol. 51: 629-659. https://doi.org/10.1146/annurev.micro.51.1.629
  2. Fiedor J, Burda K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6: 466-488. https://doi.org/10.3390/nu6020466
  3. Jaswir I, Noviendri D, Hasrini RF, Octavianti F. 2011. Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res. 5: 7119-7131.
  4. Ducrey Sanpietro LM, Kula MR. 1998. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast 14: 1007-1016. https://doi.org/10.1002/(SICI)1097-0061(199808)14:11<1007::AID-YEA307>3.0.CO;2-U
  5. Del Campo JA, Moreno J, Rodriguez H, Angeles Vargas M, Rivas Joaquin, Guerrero MG. 2000. Carotenoid content of chlorophycean microalgae_factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76: 51-59. https://doi.org/10.1016/s0168-1656(99)00178-9
  6. Ninet L, Renaut J, Tissier R. 1969. Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol. Bioeng. 11: 1195-1210. https://doi.org/10.1002/bit.260110614
  7. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  8. Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
  9. Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, et al. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 6: 29. https://doi.org/10.1186/1475-2859-6-29
  10. Hagi T, Kobayashi M, Kawanoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771. https://doi.org/10.1111/jam.12182
  11. Young AJ, Lowe GW. 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27. https://doi.org/10.1006/abbi.2000.2149
  12. Garrido-Fernandez J, Maldonado-Barragan A, Caballero-Guerrero B, Homero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid produxtion in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39. https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
  13. Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot JP, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: an efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121. https://doi.org/10.1016/j.syapm.2015.12.003
  14. Ben-Amotz A, Avron M. 1983. On the factors which determine massive ${\beta}$-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant. Physiol. 72: 593-597. https://doi.org/10.1104/pp.72.3.593
  15. Hagi T, Kobayashi M, Nomura M. 2014. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus. FEMS Microbiol. Lett. 350: 223-230. https://doi.org/10.1111/1574-6968.12341
  16. Bruno-Barcena JM, Azcarate-Peril MA, Hassan HM. 2010. Role of antioxidant enzymes in bacterial resistance to organic acids. Appl. Environ. Microbiol. 76: 2747-2753. https://doi.org/10.1128/AEM.02718-09
  17. Desmond C, Fitzgerald GF, Stanton C, Ross RP. 2004. Improved stress tolerance of Gro ESL over producing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70: 5929-5936. https://doi.org/10.1128/AEM.70.10.5929-5936.2004
  18. Kimoto-Nira H, Kobayashi M, Nomura M, Sasaki K, Suzuki C. 2009. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media. Int. J. Food Microbiol. 131: 183-188. https://doi.org/10.1016/j.ijfoodmicro.2009.02.021
  19. Miyoshi A, Rochat T, Gratadoux JJ, Loir YL, Oliveira SC, Langella P, et al. 2003. Oxidative stress in Lactococcus lactis. Genet. Mol. Res. 2: 348-359.
  20. Neviani E, Carminati D, Veaux M, Hermier J, Giraffa G. 1991. Characterization of Lactobacillus helveticus strains resistant to lysozyme. Lait 71: 65-73. https://doi.org/10.1051/lait:199115
  21. Hagi T, Kobayashi M, Nomura M. 2014. Aerobic conditions increase isoprenoid biosynthesis pathway gene expression levels for carotenoid production in Enterococcus gilvus. FEMS Microbiol. Lett. 362: 223-230.
  22. Lim HS, Cha I, Roh SW, Shin H, Seo M. 2017. Enhanced producion of gamma-aminobutyric acid by optimizing culture conditions of Lactobacillus brevis HYE1 isolated from kimchi, a korean fermented food. J. Microbiol. Biotechnol. 27: 450-459. https://doi.org/10.4014/jmb.1610.10008
  23. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Biotechnol. 176: 7719-7726.
  24. Kobayashi M, Kakizono T, Nagai S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873. https://doi.org/10.1128/aem.59.3.867-873.1993
  25. Clauditz A, Resch A, Wieland KP, Peschel A, Gotz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953. https://doi.org/10.1128/IAI.00204-06
  26. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, et al. 1992. Relationship between oxygen sensitivity and oxygen metabolism of Bifidobacterium species. J. Dairy Sci. 75: 3296-3306. https://doi.org/10.3168/jds.s0022-0302(92)78105-3
  27. Marova I, Carnecka M, Halienova A, Breierova E, Koci R. 2010. Production of carotenoid-/ergosterol-supplemented biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol. Biotechnol. 48: 56-61.
  28. Jeong JC, Lee IY, Kim SW, Park YH. 1999. Stimulation of ${\beta}$-carotene synthesis by hydrogen peroxide in Blakeslea trispora. Biotechnol. Lett. 21: 683-686. https://doi.org/10.1023/A:1005507630470
  29. Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33. https://doi.org/10.1016/j.ymben.2013.11.002
  30. Bouayed J, Bohn T. 2010. Exogenous antioxidants-doubledeged swords in cellular redox state. Oxidative Med. Cell. Longev. 3: 228-237. https://doi.org/10.4161/oxim.3.4.12858
  31. Jeong S, Kang CK, Choi YJ. 2018. Metabolic engineering of Deinococcus radiodurans for the production of phytoene. J. Microbiol. Biotechnol. 28: 1691-1699. https://doi.org/10.4014/jmb.1808.08019
  32. Yatsunami R, Ando A, Yang Y, Takaichi S, Kohno M, Matsumura Y, et al. 2014. Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front. Microbiol. 5: 100. https://doi.org/10.3389/fmicb.2014.00100
  33. Manimala MRA, Murugesan R. 2014. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. Isolated from natural source. J. Appl. Nat. Sci. 6: 649-653. https://doi.org/10.31018/jans.v6i2.511
  34. Chooruk A, Piwat S, Teanpaisan R. 2017. Antioxidant activity of various oral Lactobacillus strains. J. Appl. Microbiol. 123: 271-279. https://doi.org/10.1111/jam.13482
  35. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, et al. 2013. Antioxidnat activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54: 270-275. https://doi.org/10.1016/j.ijbiomac.2012.12.037
  36. Suzuki Y, Kosaka M, Shindo K, Kawasumi T, Kimoto-Nira H, Suzuki C. 2013. Identification of antioxidants produced by Lactobacillus plantaum. Biosci. Biotechnol. Biochem. 77: 1299- 1302. https://doi.org/10.1271/bbb.121006
  37. Steiger S, Perez-Fons L, Fraser PD, Sandmann G. 2012. Biosynthesis of a novel $C_{30}$ carotenoid in Bacillus firmus isolates. J. Appl. Microbiol. 113: 888-895. https://doi.org/10.1111/j.1365-2672.2012.05377.x
  38. Wu Y, Ma Y, Li L, Yang X. 2018. Preparation and antioxidant activities in vitro of a designed antioxidant peptide from pinctada fucata by recombinant Escherichia coli. J. Microbiol. Biotechnol. 28: 1-11. https://doi.org/10.4014/jmb.1708.08032

Cited by

  1. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway vol.10, pp.4, 2019, https://doi.org/10.1007/s13205-020-2149-y
  2. 4,4'-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity vol.31, pp.1, 2021, https://doi.org/10.4014/jmb.2010.10022
  3. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1 vol.116, pp.4, 2019, https://doi.org/10.1111/mmi.14794
  4. Biomarkers and Utility of the Antioxidant Potential of Probiotic Lactobacilli and Bifidobacteria as Representatives of the Human Gut Microbiota vol.9, pp.10, 2021, https://doi.org/10.3390/biomedicines9101340