DOI QR코드

DOI QR Code

Seismic Fragility Assessment Method for RC Bridges in Korea using a Representative Bridge

대표 교량을 이용한 국내 철근콘크리트 교량의 지진취약성 분석 방법

  • 안효준 (인하대학교 사회인프라공학과) ;
  • 정성훈 (인하대학교 건축공학과) ;
  • 신수봉 (인하대학교 사회인프라공학과)
  • Received : 2019.11.07
  • Accepted : 2019.11.14
  • Published : 2019.12.31

Abstract

In this investigation, a set of seismic fragility curves for RC bridges in Korea is derived by considering variations of the representative analytical model. The dimensions and specifications of the model are determined, based on statistical analysis of the inventory of RC bridges in Korea. Variations of important modeling parameters such as material properties, size of structural members, and dimension of the bridge are defined based on statistical studies of the bridges. The OpenSees program is utilized for the analysis to represent the inelastic behavior of RC members. A systematic approach is developed to perform a large volume of inelastic dynamic analysis, in which continuous variation of the modeling parameters are programmed to appropriately represent the characteristics of RC bridges in Korea.

본 논문에서는 OpenSees 프로그램을 이용한 콘크리트 교량의 지진취약성 분석 방법에 대한 고찰을 제시한다. 교각 및 휨 부재 분산 비선형(distributed plasticity) 요소를 적용한 해석모델을 활용하여 지진에 대한 응답을 구하고 이를 통계적으로 처리하여 확률론적 지진취약성 분석을 수행한다. 응답 통계는 세기가 같은 지진파의 집단을 단계별로 scaling하는 stripe 방법과 다양한 세기를 가진 지진파 집단을 선정하는 cloud방법을 적용하고 이 두 방법에 의한 분석결과의 차이를 비교한다. 한계상태에는 교각의 휨변형과 교좌장치의 변위를 기준으로 산정한 다단계 한계상태를 적용하고, 여러 가지 한계상태를 취합한 시스템 취약성을 도출한다. 지진응답의 통계적 처리 방법과 교량의 손상 정의가 지진취약성 곡선에 주는 영향을 고찰한다.

Keywords

References

  1. ATC-13 (1985) Earthquake Damage Evaluation Data for California, Applied Technology Council, Redwood City, California.
  2. ATC-14 (1987) Evaluating the Seismic Resistance of Existing Buildings, Applied Technology Council, Redwood City, California.
  3. ATC-40 (1996) Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Redwood City, California.
  4. Calvi, G.M. (1999) A Displacement-based Approach for Vulnerability Evaluation of Classes of Buildings, J. Earthq. Eng., 3(3), pp.411-438. https://doi.org/10.1080/13632469909350353
  5. Celik, O.C., Ellingwood, B.R. (2009) Seismic Risk Assessment of Gravity Load Designed Reinforced Concrete Frames Subjected to Mid-America Ground Motions, J. Struct. Eng., ASCE, 135(4), pp.414-424. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:4(414)
  6. Chryssanthopoulos, M.K., Dymiotis, C., Kappos, A.J. (2000) Probabilistic Evaluation of behaviour Factors in EC8-Designed R/C Frames, Eng. Struct., 22(8), pp.1028-1041. https://doi.org/10.1016/S0141-0296(99)00026-7
  7. HAZUS (1995) National Institute of Building Sciences, Development of a Standardized Earthquake Loss Estimation Methodology, FEMA, Washington, DC.
  8. Jeong, S.H., Elnashai, A.S. (2007) Probabilistic Fragility Analysis Parameterized by Fundamental Response Quantities, Eng. Struct., 29(6), pp.1238-1251. https://doi.org/10.1016/j.engstruct.2006.06.026
  9. Kim, H.S., Song, J.K. (2010) Effect of Near- and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges, J. Earthq. Eng. Soc. Korea, 14(5), pp.53-64. https://doi.org/10.5000/EESK.2010.14.5.053
  10. Mazzoni, S., McKenna, F., Scott, M.H., Fenves, G.L. (2005) OpenSees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center.
  11. Rossetto, T., Elnashai, A.S. (2003) Derivation of Vulnerability Functions for European-type RC Structures based on Observational Data, Eng. Struct., 25(10), pp.1241-1263. https://doi.org/10.1016/S0141-0296(03)00060-9
  12. Shinozuka, M., Feng, M.Q., Kim, H-K., Kim, S-H. (2000) Nonlinear Static Procedure for Fragility Curve Development, J. Eng. Mech., ASCE, 126(12), pp.1287-1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  13. Singhal, A., Kiremidjian, A.S. (1998) Bayesian Updating of Fragilities with Application to RC Frames, J. Struct. Eng., ASCE, 124(8), pp.922-929. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(922)