References
- P. Benner, M. Ohlberger, A. T. Patera, G. Rozza, D. C. Sorensen, K. Urban (Eds.), Special Issue: Model Order Reduction of Parameterized Systems, Adv. Comput. Math. 41, 2015.
- G. Berkooz, P. Holmes, J. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech. 25 (1993) 539-575. https://doi.org/10.1146/annurev.fl.25.010193.002543
- J. Burkardt, M. Gunzburger, H.-C. Lee, Centroidal Voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput. 28(2) (2006) 459-484. https://doi.org/10.1137/5106482750342221x
- J. Burkardt, M. Gunzburger, H.-C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Meth. Appl. Mech. Eng. 196 (2006) 337-355. https://doi.org/10.1016/j.cma.2006.04.004
- Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms, SIAM Rev. 41(4) (1999) 637-676. https://doi.org/10.1137/S0036144599352836
- M. Gunzburger, J. Peterson, J. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data, Comput. Meth. Appl. Mech. Eng. 196 (2007) 1030-1047. https://doi.org/10.1016/j.cma.2006.08.004
- K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic equations, Numer. Math. 90 (2001) 117-148. https://doi.org/10.1007/s002110100282
- Y. C. Liang, H. P. Lee, S. P. Lim, W. Z. Lin, K. H. Lee, C. G. Wu, Proper orthogonal decomposition and its application-part1: Theory, J. Sound and Vibration 252(3) (2002) 527-544. https://doi.org/10.1006/jsvi.2001.4041
- H.-C. Lee, S. Lee, G. Piao, Reduced-order modeling of Burgers equations based on centroidal Voronoi tessellation, Int. J. Numer. Anal. Model 4(3-4) (2007) 559-583.
- S. Ravindran, Reduced-order adaptive controllers for fluid flows using POD, SIAM J. Sci. Comput. 15 (2000) 457-478. https://doi.org/10.1023/A:1011184714898
- F. Fang, C. C. Pain, I. M. Navon, A. H. Elsheikh, J. Du, D. Xiao, Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phy. 234 (2013) 540-559. https://doi.org/10.1016/j.jcp.2012.10.011
- D. Gottlieb, C-W.Shu, On the Gibbs phenomenon and its resolution, SIAM Rev. 39 (1997) 644-668. https://doi.org/10.1137/S0036144596301390
- D. Gottlieb, C-W. Shu, A.Solomonoff, H. Vandeven, On the Gibbs phenomenon 1: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math. 43 (1992) 81-92. https://doi.org/10.1016/0377-0427(92)90260-5
- D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function, Numerische Mathematik 71 (1995) 511-526. https://doi.org/10.1007/s002110050155
- D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon IV: recovering exponential accuracy in a sub-interval from a Gegenbauer partial sum of a piecewise analytic function, Math. Comput. 64 (1995) 1081-1095. https://doi.org/10.1090/S0025-5718-1995-1284667-0
- D. Gottlieb, C.-W. Shu, On the Gibbs phenomenon III: recovering exponential accuracy in a subinterval from a spectral partial sum of a piecewise analytic function, SIAM J. Numer. Anal. 33 (1996) 280-290. https://doi.org/10.1137/0733015
- B.-C. Shin, J.-H. Jung, Spectral collocation and radial basis function methods for one-dimensional interface problems, Appl. Numer. Math. 61(8) (2011) 911-928. https://doi.org/10.1016/j.apnum.2011.03.005
- C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439-471. https://doi.org/10.1016/0021-9991(88)90177-5
- J. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge, 2007.
- M. Abramowitz, I. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, tenth ed., New York, 1964.
- W.-S. Don, D. Gottlieb, J.-H. Jung, Multi-domain Spectral Method for Supersonic Reactive Flows, J. Comput. Phys. 192(1) (2003) 325-354. https://doi.org/10.1016/j.jcp.2003.07.022
- E. Tadmor, J. Tanner, Adaptive filters for piecewise smooth spectral data, IMA J. Num. Anal. 25 (2005) 635-647. https://doi.org/10.1093/imanum/dri026
- R. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge UP, Cambridge, 2002.
- J.-K. Seo, B.-C. Shin, Numerical solutions of Burgers equation by reduced-order modeling based on pseudospectral collocation method, J. KSIAM 19(2) (2015) 123-135.
- R. Archibald, K.W. Chen, A. Gelb, R. Renaut, Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method, Neuroimage, 20 (2003) 489-502. https://doi.org/10.1016/S1053-8119(03)00260-X
- A. Gelb,, D. Gottlieb, The resolution of the Gibbs phenomenon for "spliced" functions in one and two dimensions, Comput. Math. Appl. 33 (1997) 35-58.