DOI QR코드

DOI QR Code

Recent Trends in Research of Polyglycerin Fatty Acid Esters

폴리글리세린지방산에스터의 최근 연구동향(제1보)

  • Rang, Moon Jeong (Division of Fine Science and Engineering, Pai Chai University)
  • 랑문정 (배재대학교 정밀응용과학부)
  • Received : 2019.12.05
  • Accepted : 2019.12.30
  • Published : 2019.12.30

Abstract

Polyglycerol fatty acid ester nonionic surfactants have been used for a long time in foods and have been suggested as an alternative to the safety problems of PEG based nonionic surfactants. The polyglycerol fatty acid ester surfactants are synthesized by combining a hydrophilic polyglycerin and a lipophilic fatty acid. The hydrophilic polyglycerin is polymerized using glycerin, glycidol, epichlorohydrin, etc. The main issues of the polyglycerol polymerization reaction are to increase the content of the polyglycerol in the form of linear rather than branched or cyclic forms and to narrow the distribution of the degree of polymerization. The method of binding a lipophilic fatty acid group to a hydrophilic polyglycerin includes chemical synthesis such as esterification reaction and enzyme synthesis using lipase enzyme. The main issues of polyglycerin fatty acid ester synthesis are to increase the yield and to control the degree of esterification while reducing side reactions.

리글리세린지방산에스터 비이온계면활성제는 식품 등에 오래전부터 사용해 왔으며 PEG계 비이온계면활성제의 안전성 문제에 대한 대안으로 제시되고 있다. 폴리글리세린지방산에스터 계면활성제는 친수기인 폴리글리세린과 친유기인 지방산을 결합시켜 합성된다. 친수기인 폴리글리세린은 글리세린, 글리시돌, 에피클로로히드린 등을 이용하여 중합되는 데 폴리글리세린 중합반응의 주요 이슈는 분기·환상형태가 아닌 직쇄형태의 폴리글리세린의 함량을 높이고 중합도의 분포를 좁히는 것이다. 친수기인 폴리글리세린에 지방산계 친유기를 결합시키는 방법에는 에스터화 반응 등의 화학적 합성법과 지방분해효소를 이용한 효소 합성법이 있다. 폴리글리세린지방산에스터 합성의 주요 이슈는 에스터화정도를 조절하면서 반응수율을 높이고 부반응을 억제하는 것이다.

Keywords

References

  1. T. F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH (2005).
  2. M. Rosen, J. Kunjappu, Surfactants and Interfacial Phenomena 4th ed., John Wiley (2012).
  3. L. D. Rhein, M. Schlossman, A. O'Lenick, P. Somasundaran, Surfactants in Personal Care Products and Decorative Cosmetics 3rd ed., CRC Press (2006).
  4. C. Fruijtier-Poelloth, "Safety Assessment on Polyethylene Glycols (PEGs) and Their Derivatives as Used in Cosmetic Products", Toxicology, Vol. 214, No. 1-2, pp. 1-38 (2005). https://doi.org/10.1016/j.tox.2005.06.001
  5. H. J. Jang, C. Y. Shin, and K. B. Kim, "Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use", Toxicological Research, Vol. 31, No. 2, pp. 105-136 (2015). https://doi.org/10.5487/TR.2015.31.2.105
  6. K. Schaefer, "Environmental Groups Raise Concern Surrounding 1,4-Dioxane [cited 2008 Oct 30], Available From": https://www.cosmeticsandtoiletries.com/regulatory/region/northamerica/6775487.html (accessed Oct., 10, 2019).
  7. V. Norn, "Polyglycerol Ester"s, Emulsifiers In Food Technology 2nd ed., John Wileys & Sons (2014).
  8. T. Higuchi, "Emulsification and Solubilization Characterization of Polyglycerol Fatty Acid Esters". Oleo Science, Vol. 19, No. 10, pp. 405-410 (2019). https://doi.org/10.5650/oleoscience.19.405
  9. T. Iwanaga, "Characteristics and Application of Polyglycerin Fatty Ester", Function and Application of Surfactant & Amphiphilic Polymers, pp. 62-73, CMC (2005, 2010).
  10. Taiyo Kagaku, Polyglycerin Fatty Acid Esters, Available From: https://www.taiyokagaku.com/products/material_25/img/material_25_2019.pdf. (accessed Aug., 10, 2019).
  11. V. Plasman, T. Cautier, N. Boutos, "Polyglycerols Versatile Ingredients for Personal Care", Household And Personal Products Industry, Vol. 41, No. 11, pp. 94-97 (2004).
  12. T. Fukuhara, T. Oouchi, T. Kamata, K.Inoue, S. Tsuji, T. Iwanaga, "Development of Preparation Solubilized Coenzyme Q10 with Polyglycerol Fatty Acid Esters and Application for Cosmetics", Journal of Society of Cosmetic Chemists of Japan, Vol. 42, No. 4, pp. 297-304 (2008). https://doi.org/10.5107/sccj.42.297
  13. M. Koyama, T. Fukuhara, "Characteristics and Application of Polyglycerol Fatty Acid Esters", Journal of the Japan Society of Colour Material, Vol. 89, No. 12, pp. 430-434 (2016). https://doi.org/10.4011/shikizai.89.430
  14. S. Dairaku, W. Horie, Y. Sakazaki, "Development High Performance Sunscreen Product without PEG-based Surfactants", Journal of Society of Cosmetic Chemists of Japan, Vol. 50, No. 4, pp. 314-320 (2016). https://doi.org/10.5107/sccj.50.314
  15. M. Pagliaro, M. Rossi, The Future of Glycerol 2nd ed., pp. 87-101, RSC Publishing (2010).
  16. A. Martin, M. Richter, "Oligomerization of Glycerol -A Critical Review", European Journal of Lipid Science and Technology, Vol. 113, pp. 100-117 (2011) https://doi.org/10.1002/ejlt.201000386
  17. K. Matsushita, Y. Shioyama, "Polyglycerol Fatty Acid Esters and Their Use", Yukaku, Vol. 35, No. 2 pp. 1-9 (1986).
  18. A. Martin, M. P. Checinski, M. Richter, "Tuning of Diglycerol Yield and Isomer Distribution in Oligomerization of Glycerol Supported by DFT-Calculations", Catalysis Communications, Vol. 25, pp. 130-135 (2012). https://doi.org/10.1016/j.catcom.2011.10.013
  19. N. Garti, A. Aserin, B. Zaidman, "Polyglycerol Esters : Optimization and Techno-Economic Evaluation", Journal of American Oil Chemists' Society, pp. 878-879. (1981).
  20. C.H. Zhon, J. N. Beltramini, "Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals", Chemical Society Reviews, Vol. 37, pp. 527-549 (2008). https://doi.org/10.1039/B707343G
  21. US Patent US 6620904 B2, "Process for Preparing Linear Polyglycerols and Polyglycerol Esters" (2003).
  22. R. Nguyen, N. Galy, A. K. Singh, F. Paulus, D. Stobener, C. Schlesener, S. K. Sharma, R. Haag, C. Len, "A Simple and Efficient Process for Large Scale Glycerol Oligomerization by Microwave Irradiation", Catalysts, Vol. 7, pp. 123-134 (2017). https://doi.org/10.3390/catal7040123
  23. K. S. Shikhaliev, N. V. Stolpovskaya, M.l Yu. Krysin, A, V. Zorina, D, V. Lyapun, F. I. Zubkov, K. Y. Yankina, "Production and Emulsifying Effect of Polyglycerol and Fatty Acid Esters with Varying Degrees of Esterification", Journal of American Oil Chemists' Society, Vol. 93, pp. 1429-1440 (2016). https://doi.org/10.1007/s11746-016-2894-6
  24. U. I. Nda-Umar, I. Ramli, Y. H. Taufiq-Yap, E. N. "Muhamad, An Overview of Recent Research in the Conversion of Glycerol into Biofuels, Fuel Additives and other Bio-Based Chemicals", Catalysts, Vol. 9, No. 15, pp. 1-47 (2019).
  25. A. M. Ruppert, J. D. Meeldijk, B. W. Kuipers, B. H. Erne, B. M. "Weckhuysen, Glycerol Etherification over Highly Active CaO-Based Materials: New Mechanistic Aspects and Related Colloidal Particle Formation". Chemistry: A European Journal, Vol. 14, pp. 2016-2024 (2008). https://doi.org/10.1002/chem.200701757
  26. European Patent EP 2267057 B1, "A Process of Producing Polyglycerols from Crude Glycerol" (2012).
  27. European Patent EP 2248842 B1, "A Process of Producing Polyglycerols from Crude Glycero"l (2012).
  28. A. Dworak, B. Trzebicka, "Polyglycidol -How Is It Synthesized and What Is It Used for?", POLIMERY, Vol. 58, No. 9, pp. 641-610 (2013) https://doi.org/10.14314/polimery.2013.641
  29. R. Toka, P. Kubisa, S. Penczek, "Cationic Polymerization of Glycidols: Coexistence of the Activated Monomer and Active Chain End Mechanism", Macromolecules, Vol. 27, pp. 320-322 (1984). https://doi.org/10.1021/ma00080a002
  30. European Patent EP 1568677 B1, "Process for Producing Polyglycerol" (2014).
  31. E. J. Vandenberg, "Polymerization of Glycidol and Its Derivatives: A New Rearrangement Polymerization", Journal of Polymer Science, Vol. 23, pp. 915-949 (1985). https://doi.org/10.1002/pol.1985.170230401
  32. A. Sunder, R. Hanselmann, H. Frey, R. Muelhaupt, "Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization", Macromolecules, Vol. 32, pp. 4240-4246 (1999). https://doi.org/10.1021/ma990090w
  33. T. Higashihara, Y. Segawa, W. Sinananwanich, M. Ueda, "Synthesis of Hyperbranched Polymers with Controlled Degree of Branching", Polymer Journal, Vol. 44, pp. 14-29 (2012). https://doi.org/10.1038/pj.2011.99
  34. M. Gosecki, M. Gadzinowski, M. Gosecka, T. Basinska S. Slomkowski, Polyglycidol, Its Derivatives, "Polyglycidol-Containing Copolymers - Synthesis and Medical Applications", Polymers, Vol. 8, pp. 227-251 (2016). https://doi.org/10.3390/polym8060227
  35. US Patent US 4960953, "Process for Preparing Polyglycerols" (1990).
  36. Y. Okamoto, "Cationic Ring-Opening Polymerization of Epichlorohydrin in the Presence of Ethylene Glycol", Ring-Opening Polymerization. Kinetics, Mechanisms, and Synthesis, pp. 361-372, J. E. McGrath(Ed.), American Chemical Society (1985).
  37. US Patent US 5041688, "Process for Preparation Polyglycerols" (1991).
  38. M. O. Guerrero-Perez, J. M. Rosas, J. Bedia, J. Rodriguez-Mirasol, T. Cordero, "Recent Inventions in Glycerol Transformations and Processing", Recent Patents on Chemical Engineering, Vol. 2, No. 1, pp. 1-11 (2009). https://doi.org/10.2174/1874478810902010001
  39. T. Benvegnu, D. Plusquellec, L. Lemi e gre, "Surfactants from Renewable Sources: Synthesis and Application"s, Monomers, Polymers and Composites from Renewable Resources, pp. 153-178, M. N. Belgacem and A. Gandini (Eds.), Elsevier (2008).
  40. European Patent EP 2534294 B1, "New Polyglycerol Esters and Their Use" (2015).
  41. H. S. Usha, S. Martins, "Synthesis Characterization and Application of Polyglycerol Esters of Fattyacids: Biodegradable Surfactants", Journal of Dispersion Science and Technology, Vol. 37, No. 1, pp. 41-47 (2016). https://doi.org/10.1080/01932691.2015.1025137
  42. V. N. Mutlu, S. Yilmaz, "Esterification of Cetyl Alcohol with Palmitic Acid over WO3/Zr-SBS-a5 and Zr-SBS-15 Catalysts", Applied Catalysis A: General, Vol. 522, pp. 194-200 (2016). https://doi.org/10.1016/j.apcata.2016.05.010
  43. C. B. Fryhle, S. A. Snyder, T. W. G. Solomons, Organic Chemistry 12th ed. , pp. 778-782, Wiley (2016).
  44. US Patent US 5424469, "Process for Preparing Polyglycerol Fatty Acid Ester Mixtures and Use in Cosmetic, Pharmaceutical and Chemical Preparations" (1995).
  45. US Patent US 5466719, "Polyglycerol Fatty Acid Ester Mixture" (1995).
  46. WO 02/36534 A2, "Process for Preparing Linear Polyglycerol and Polyglycerol Fatty Acid Esters" (2002).
  47. US Patent US 54950441, Methods of Manufacturing Polyglycerol Esters (1990).
  48. Japan Patent JP 2000143584A, "Production of Polyglycerol Monofatty Acid Esters" (2000).
  49. Japan Patent JP 2000143794A, "Production of Polyglycerol Monofatty Acid Esters" (2000).
  50. WO 2014061468 A1, Polyglyceryl Monofatty Acid Ester Composition (2014).
  51. D. Charlemagne, M.D. Legoy, "Enzymatic Synthesis of PolyglyceroI-Fatty Acid Esters in a Solvent-Free System," Journal of American Oil Chemists' Society, Vol. 72, No. 1, pp. 61-65 (1995). https://doi.org/10.1007/BF02635780
  52. S. Matsumura, M. Maki, K. Toshima, K. Kawada, Enzymatic Syhnthesis, Surface Activity, "Antimicrobial Properties and Biodegradability of Di- and Triglycerol Fatty Acid Esters", Journal of Japan Oil Chemists' Society, Vol. 48, No. 7, pp. 681-725 (1999). https://doi.org/10.5650/jos1996.48.681
  53. B. Peng, C. Y. Xiong, J. N. Hu, X. M. Zhu, Z. Deng, "Study on Enzymatic Synthesis of Polyglycerol Fatty Acid Esters and Its Application as an Emulsion Stabilizer", Journal of Agricultural and Food Chemistry, Vol. 66, No. 30, pp. 8104-8113 (2018). https://doi.org/10.1021/acs.jafc.8b00222
  54. F.L. Wan, Y.L. Teng, Y. Wang*, A.J. Li, N. Zhang, Optimization of Oligoglycerol Fatty Acid Esters Preparation Catalyzed by Lipozyme 435, Grasas y Aceites, Vol. 66, No. 3, pp. 88-90 (2015).
  55. W. Wang, C. Liu, G. Zhang, F. Yang, X. Wang, F. Chen, F. Zhao, S. Wang, B. Xu, "Green Synthesis of Decaglycerol Laurates by Lipase-catalyzed Transesterification of Methyl Laurate with Decaglycerol", Journal of Chemistry, pp. 1-7 (2019).
  56. E. Garcia, F. Ferrari, T. Carcia, M. Martinez, J. Aracil, "Optimazation of the Enzymatic Esterification of Diglycerol and Lauric Acid", Journal of Surfactants and Detergents, Vol. 4, No. 3, pp. 257-262 (2001). https://doi.org/10.1007/s11743-001-0177-1