DOI QR코드

DOI QR Code

Development and efficiency evaluation of 30kW scale syngas cogeneration system

30kW 급 합성가스 열병합 시스템 개발 및 효율 성능평가

  • Received : 2019.12.04
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

In this paper, Gas engine was tested for the energy of synthesis gas. As excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 in 1800 rpm and synthesis gas, thermal efficiency generally decrease and power generation was 34 kWm at λ 1.4. And excess air ratio increase 1, 1.1, 1.2, 1.3, 1.4 in power generation 34 kWm, thermal efficiency generally increase 34.2%, 36.9%, 37.2%, 37.4%, 38.1%. Total efficiency through power generation consumes 38.7 kg/h of fuel at 30 kWe load and recovers 57.3% of waste heat by recovering 57.3 kW of waste heat through 32.1% power generation efficiency and heat recovery from cooling water and exhaust gas. The total efficiency was 85.8%.

본 연구에서는 합성가스의 에너지화를 위한 가스엔진 성능 평가를 수행하였다. 회전수 1800 rpm 조건에서 공기과잉률이 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 증가에 따른 엔진출력(kWm)과 열효율(%)을 평가한 결과, 공기과잉률 λ 1.4에서 엔진출력 34 kWm를 나타냈으며, 공기과잉률이 증가할수록 엔진 열효율은 전반적으로 감소하는 경향을 보였다. 엔진출력 34 kWm 조건에서 공기과잉률이 1, 1.1, 1.2, 1.3, 1.4 증가시 열효율이 34.2%, 36.9%, 37.2%, 37.4%, 38.1%로 증가하였고, 발전출력을 통한 종합효율은 발전출력 30 kWe 부하조건에서 38.7 kg/h의 연료를 소모하여 32.1%의 발전효율과 냉각수와 배기가스에서의 열회수를 통해 57.3 kW의 폐열을 회수하여 53.8%의 열을 회수하여 총 85.8%의 종합효율을 보이는 것으로 나타났다.

Keywords

References

  1. H. S. Kim, J. H. Kim, J. H. Ryu, etc., "Recent trends for the removal and the application technology of VOCs in process gas", Journal of Energy & Climate Change, Vol.12, No.2, pp. 165-177, (2017).
  2. C. Coeur, V. Jacob, P. Foster, "Aerosol formation from the gas-phase reaction of hydroxyl radical with the natural hydrocarbon bornyl acetate", Atmospheric Environment, Vol.33, No.10, pp. 1615-1620, (1999). https://doi.org/10.1016/S1352-2310(98)00385-9
  3. A. Guenther, N. Hewitt, D. Erickson, R. Fal, "A global model of natural volatile organic compound emissions", Journal of Geophysical Research: Atmospheres, Vol.100, No.D5, pp. 8873-8892, (1995). https://doi.org/10.1029/94JD02950
  4. L. C. Michael, "Development and evaluation of a procedure for determining volatile organics in water", Environmental science & technology, Vol.22, No.5, pp. 565-570, (1988). https://doi.org/10.1021/es00170a014
  5. P. Shao, J. An, J. Xin, F. Wu, J. Wang, D. Ji, Y. Wang, "Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China", Atmospheric Research, Vol.176, pp. 64-74, (2016). https://doi.org/10.1016/j.atmosres.2016.02.015
  6. Y. F. Wang, C. F. Peng, H. P. Chao, "Sorption of volatile organic compounds on organic substance-modified titanate nanotubes", Aerosol and Air Quality Research, Vol.15, pp. 2688-2699, (2015). https://doi.org/10.4209/aaqr.2015.10.0592
  7. W. Hong-li, J. Sheng-ao, L. Sheng-rong, H. Qing-yao, L. Li, T. Shi-Kang, C. Chang-hong, "Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China", Science of the Total Environment, Vol.607, pp. 253-261, (2017). https://doi.org/10.1016/j.scitotenv.2017.07.001
  8. Y. H. Lim, J. Y. Lee, J. R. Shin, J. S. Choi, B. H. Park, "Study of toluene decomposition using nonthermal plasma and catalyst", Journal of the Korean Applied Science and Technology, Vol.31, No.4, pp. 541-548, (2014).
  9. B. U. Hong, S. H. Kim, S. Y. Hwang, G. P. Lee, H. Kim, "1LI-4 Development of eco-friendly process technology for energy recovery from volatile organic compounds corresponding fine dust", The Korean Society of Industrial and Engineering Chemistry Research paper Abstract, Vol.2017, No.1, pp. 115, (2017).
  10. H. Sui, P. An, X. Li, S. Cong, L. He, "Removal and recovery of o-xylene by silica gel using vacuum swing adsorption", Chemical Engineering Journal, Vol.316, pp. 232-242, (2017). https://doi.org/10.1016/j.cej.2017.01.061
  11. S. Y. Hwang, G. B. Lee, J. E. Park, J. H. Kim, S. Kim, B. Hong, "Removal and recycling of volatile organic compounds (VOCs) adsorbed on activated carbons using in-situ vacuum system", International Journal of Environmental Science and Technology, Vol.16, pp. 7827-7836, (2019). https://doi.org/10.1007/s13762-019-02376-6
  12. F. I. Khan, A. K. Ghoshal, "Removal of volatile organic compounds from polluted air", Journal of Loss Prevention in the Process Industries, Vol.13, pp. 527-545, (2000). https://doi.org/10.1016/S0950-4230(00)00007-3
  13. E. K. John, A. Q. Ather, M. J. Grieve, "Advanced Engine Management Using on-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emission Standards", SAE technical paper, (1999).
  14. K. D. Isherwood, J. R. Linna, P. J. Loftus, "Using on-Board Fuel Reforming by Partial Oxidation To Improve SI Engine Cold-Start Performance and Emissions", SAE transactions, pp. 411-419, (1998).
  15. C. W. Park, Y. Choi, S. M. Oh, C. G. Kim, G. H. Lim, "The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas", Transactions of the Korean Society of Mechanical Engineers, Vol.33, No.5, pp. 334-342, (2009). https://doi.org/10.3795/KSME-B.2009.33.5.334