DOI QR코드

DOI QR Code

용매 환경에서의 폴리아미드 고분자 재료의 자체확산과 유변학적인 특성

Self Diffusions and Rheological Properties of Polyamide Polymer Materials in Various Solvents

  • 김남정 (삼육대학교 화학생명과학과)
  • Kim, Nam Jeong (Department of Chemistry & Life Science, Sahmyook University)
  • 투고 : 2019.09.04
  • 심사 : 2019.11.22
  • 발행 : 2019.12.30

초록

비결정성 영역에서의 유동단위의 고찰을 위하여 유동 파라메타와 결정크기로부터 폴리아미드 섬유고분자 물질의 자체확산, 홀 부피, 유동 열역학 파라메타 등을 계산하였다. 폴리아미드 섬유의 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하여 여러 온도의 공기, 증류수, 산, 염기 용액에서 실행하였다. REM 모델의 이론적인 응력완화 식에 응력완화 실험 결과를 적용하여 여러 가지 유동 파라메타를 계산하였다. 이들 시료의 유동 파라메타는 완화 스펙트럼, 자체확산, 점도 및 유동 활성화 에너지와 직접적인 연관을 갖는 것으로 규명되었다.

The self diffusion, hole volume, and flow thermodynamic parameters of polyamide fibers were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. The stress relaxation of polyamide filament fibers were carried out in air and various solvents at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Ree-Eyring and Maxwell non-Newtonian model. It was observed that the rheological parameters of these polyamide filament fibers are directly related to the relaxation spectra, self diffusion, viscosities, and activation energies of flow segments.

키워드

참고문헌

  1. A. S. Krausz and H. Eyring, Deformation Kinetics, John Wiley and sons, New York, p.36, (1975).
  2. L. H. Sperling, "Introduction to physical polymer science", John Wiley & Sons, New York, p.334, (1992).
  3. T. G. Fox and P. J. Flory, "The glass temperature and related properties of polystyrene. Influence of molecular weight", J. Polym. Sci., Vol.14, pp.315, (1954). https://doi.org/10.1002/pol.1954.120147514
  4. R. Simba and R. F. Boyer, "On a general relation involving the glass temperature and coefficients of expansion of polymers", J. Chem. Phys., Vol.37, pp.1003, (1962). https://doi.org/10.1063/1.1733201
  5. D. Cangialos, V. M. Boucher, A. Alegria, and J. Colmenero, "Free volume holes diffusion to describe physical aging in poly (mehtyl methacrylate)/silica nanocomposites", J. Chem. Phys., Vol.135, pp.14901, (2011). https://doi.org/10.1063/1.3605600
  6. V. Muralidharan1, A., Tihminlioglu1, O, Antelmann1, J. L. Duda1, R. P. Danner, and A. D. Haan, "Temperature and concentration dependence of diffusion coefficients in ethylene-propylene-diene copolymers", J. Polym. Sci., Vol.36, pp.1713, (1998). https://doi.org/10.1002/(SICI)1099-0488(19980730)36:10<1713::AID-POLB12>3.0.CO;2-C
  7. J. S. Vrentas and C. M. Vrentas, "Determination of Free-Volume Parameters for Solvent Self-Diffusion in Polymer-Solvent Systems", Macromolecules, Vol.28, pp.4740,(1995), https://doi.org/10.1021/ma00117a056
  8. J. S. Vrentas, C. M. Vrentas and N. Faridi, "Effect of solvent size on solvent self-diffusion in polymer-solvent systems", Macromolecules, Vol.29, pp.3272, (1996), https://doi.org/10.1021/ma9511356
  9. P. G. de Gennes, "Scaling concepts in polymer physics", Cornell University Press, 1985.
  10. S. Pahl, G. Fleischer, F. Fujara, and B. Geil, "Anomalous segment diffusion in polydimethylsiloxane Melts", Macromolecules, Vol.30, pp.1414, (1997), https://doi.org/10.1021/ma961421x
  11. D. E. Demco, G. Rata, R. Fechete, and B. Blumich, "Self-Diffusion Anisotropy of Small Penetrant Molecules in Deformed Elastomers", Macromolecules, Vol38, pp.5647, (2005). https://doi.org/10.1021/ma050448q
  12. A. Losch, R. Salomonovic1, U. Steiner, L. J. Fetters, and J. Klein1,. "Self-diffusion in melts of statistical copolymers: The effect of changes in microstructural composition", J. Polym. Sci., Vol.33, pp.1821, (1995). https://doi.org/10.1002/polb.1995.090331212
  13. N. Clarke, F. R. Colley, S. A. Collins, L. R. Hutchings, and R. L. Thompson, "Self diffusion and viscoelastic measurements of polystyrene star polymers", Macromolecules, Vol.39, pp.1290, (2006). https://doi.org/10.1021/ma051973s
  14. M. W. Hamersky, M. Tirrell and T. P. Lodge, "Self-diffusion of a polystyrenepolyisoprene block copolymer", J. Polym. Sci., Vol.34, pp.2899, (1996). https://doi.org/10.1002/(SICI)1099-0488(199612)34:17<2899::AID-POLB4>3.0.CO;2-M
  15. S. Pajevic, R. Bansil, and C. Konak, "Dynamic light scattering study of linear polyelectrolyte diffusion in gels", Macromolecules, Vol.28, pp.7536, (1995). https://doi.org/10.1021/ma00126a035
  16. Z. Sun and C. H. Wang, "Light Scattering from Mixtures of Two Polystyrenes in Toluene and Self-Diffusion Coefficients", Macromolecules, Vol.30, pp.4939, (1997). https://doi.org/10.1021/ma970290c
  17. W. Paul, G. D. Smith, D. Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, and D. Richter, "Chain motion in an unentangled polyethylene melt: A critical test of the rouse model by molecular dynamics Simulations and neutron spin echo spectroscopy", Phys. Rev. Lett., Vol.80, pp.2346, (1998). https://doi.org/10.1103/PhysRevLett.80.2346
  18. N. J. Kim, "Thermodynamic properties and self diffusions from rheological parameters of Eyring-Halsey model", Journal of the Korean Chemical Society, Vol.58, No.3, pp.251, (2014). https://doi.org/10.5012/jkcs.2014.58.3.251
  19. N. J. Kim, "Experimental and theory for relaxation spectrum of polyacrylonitrilepoly( vinyl chloride) copolymers", Polymer (Korea), Vol.35, No.3, pp.232, (2011). https://doi.org/10.7317/pk.2011.35.3.232
  20. N. J. Kim, "pH effect on relaxation spectra of poly(methyl acrylate)-poly (acrylonitrile) copolymers by REM model", Polymer(Korea), Vol.37, No.2, pp.135, (2013).