DOI QR코드

DOI QR Code

Restoration Efficiency Analysis of Expansive Material Implemented Trenchless Underground Cavity Restoration Method Varying Number and Location of Bore Holes

팽창재료를 이용한 지하 공동 비개착 복구공법에서 천공 개수 및 위치에 따른 복구효율 분석

  • Choi, Byeong-Hyun (Dept of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Kicheol (Dept of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Junwon (Dept of Civil and Environmental Engineering, Incheon National University) ;
  • Kim, Dongwook (Dept of Civil and Environmental Engineering, Incheon National University)
  • Received : 2019.10.24
  • Accepted : 2019.11.14
  • Published : 2019.12.30

Abstract

The conventional representative underground cavity restoration methods, which are mainly open-cut methods, require high cost and long period of time for the restoration. Therefore, various trenchless restoration methods have been proposed to improve these disadvantages. The underground cavity restoration method using the expansive material proposed in this paper is one of the trenchless methods. This method fills the underground cavity with high quality backfill soils through the small hole(s) at asphalt layer and compacts backfill soils by insertion of the expansive material within the cavity. In this study, the restoration method using expansive material was constructed in acrylic chamber. The restoration efficiency of the method was analyzed by the fill ratio and degree of relative compaction according to the location and number of bore holes. As a result of the experiment, the restoration efficiency and the optimum construction location were found to be irrelevant.

대표적인 지하 공동 복구공법인 개착 공법은 공사비 및 시공시간의 문제를 드러내고 있으며, 이를 해결하기 위한 다양한 비 개착식 공법이 제시되고 있다. 팽창재료를 이용한 지하 공동 복구공법은 비 개착식 공법 중 하나로 공법의 원리는 다음과 같다. 아스팔트층에 천공된 구멍을 통해 양질의 되메움토와 팽창재료를 공동 내로 투입하면, 투입된 팽창재료에 의해 주변 되메움토가 아직 채워지지 않은 빈 공간으로 밀려남과 동시에 다져지면서 공동을 복구하는 원리이다. 본 연구에서는 공동을 모사한 아크릴 토조에 팽창재료를 이용한 지하공동 복구공법을 시공하였다. 공동의 복구효율은 팽창재료의 투입 위치와 개수에 따른 공동의 채움율과 상대 다짐도로 분석하였으며, 실험결과 공동의 복구효율과 최적 시공 위치는 무관한 것으로 확인되었다.

Keywords

References

  1. Hong, G. G., Kim, D. W., Kim, K. S. and Yu, Y. S. (2017), "Development of Rapid Restoration method for Underground Cavity using Expansion Material", Journal of the Korean Geosynthic Society, Vol.16, No.3, pp.6-11. (in Korean)
  2. Japanese Industrial Standards (JIS), (2009), Test method for minimum and maximum densities of sands, A 1224, Japanese Industrial Standards, Tokyo, Japanese.
  3. Kim, H. S. and Youn, J. W. (2009), "A Study on Foaming Characteristics of Polyurethane depending on Environmental Temperature and Blowing Agent Content", Transactions of Materials Processing, Vol.18, No.3, pp.256-261. (in Korean) https://doi.org/10.5228/KSPP.2009.18.3.256
  4. Lee, K. C., Choi, B. G., Park, J. H. and Kim, D. W. (2018), "Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation", Journal of the Korean Geosynthtic Society, Vol.17, No.1, pp.55-64. (in Korean)
  5. Lee, K. C., Kim, D. W. and Park, J, J. (2017), "Study on Management System of Ground Sinking Based on underground Cavity Grade", Journal of the Korean Geosynthic Society, Vol.16, No.2, pp.23-33. (in Korean)
  6. Lee, K. Y. and Kang, S. J. (2014), Sinkhole; Causes and Countermeasures, Issue & Analysis, Vol. 156, pp.1-23. (in Korean)
  7. Lim, M. H., Jang, Y. J., Jung, H. Y., Sin, S. S., Kim, H. J. and Baek, Y. (2018), "A Case Study on the Application of Ground Contingency Risk Classification (GSR 1.0) in Korea" Proceedings of KSEG 2018 Spring Conference. (in Korean)
  8. Yu, N. J., Choi, J. H. and Lee, K. I. (2017), "Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity", Journal of the Korean Geosynthtic Society, Vol.16, No.2, pp.97-107. (in Korean)

Cited by

  1. Stability Analysis of Soil Flow Protector and Design Method for Estimating Optimal Length vol.11, pp.16, 2021, https://doi.org/10.3390/app11167314