References
- Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, et al. 2011. Society's failure to protect a precious resource: antibiotics. Lancet 378: 369-371. https://doi.org/10.1016/S0140-6736(11)60401-7
- Bragginton EC, Piddock LJ. 2014. UK and European Union public and charitable funding from 2008 to 2013 for bacteriology and antibiotic research in the UK: an observational study. Lancet Infect. Dis. 14: 857-868. https://doi.org/10.1016/s1473-3099(14)70825-4
- Kostyanev T, Bonten MJ, O'Brien S, Steel H, Ross S, Francois B, et al. 2016. The innovative medicines initiative's new drugs for bad bugs programme: European public-private partnerships for the development of new strategies to tackle antibiotic resistance. J. Antimicrob. Chemother. 71: 290-295. https://doi.org/10.1093/jac/dkv339
- Karam G, Chastre J, Wilcox MH, Vincent JL. 2016. Antibiotic strategies in the era of multidrug resistance. Crit. Care. 20(1): 136. https://doi.org/10.1186/s13054-016-1320-7
- Medina E, Pieper DH. 2016. Tackling threats and future problems of multidrug-resistant bacteria. Curr. Top. Microbiol. Immunol. 398: 3-33.
- Godreuil S, Leban N, Padilla A, Hamel R, Luplertlop N, Chauffour A, et al. 2014. Aedesin: structure and antimicrobial activity against multidrug resistant bacterial strains. PLoS One 9: e105441. https://doi.org/10.1371/journal.pone.0105441
- Haney EF, Mansour SC, Hancock RE. 2017. Antimicrobial peptides: An introduction. Methods Mol. Biol. 1548: 3-22. https://doi.org/10.1007/978-1-4939-6737-7_1
- da Costa JP, Cova M, Ferreira R, Vitorino R. 2015. Antimicrobial peptides: an alternative for innovative medicines? Appl. Microbiol. Biotechnol. 99: 2023-2040. https://doi.org/10.1007/s00253-015-6375-x
- Kokel A, Torok M. 2018. Recent advances in the development of antimicrobial peptides (AMPs): Attempts for sustainable medicine? Curr. Med. Chem. 25: 2503-2519. https://doi.org/10.2174/0929867325666180117142142
- Galdiero S, Falanga A, Cantisani M, Vitiello M, Morelli G, Galdiero M. 2013. Peptide-lipid interactions: experiments and applications. Int. J. Mol. Sci. 14: 18758-18789. https://doi.org/10.3390/ijms140918758
- Kristensen M, Birch D, Morck Nielsen H. 2016. Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos. Int. J. Mol. Sci. 17(2). pii: E185. doi: 10.3390/ijms17020185.
- Guidotti G, Brambilla L, Rossi D. 2017. Cell-Penetrating Peptides: from basic research to clinics. Trends Pharmacol. Sci. 38: 406-424. https://doi.org/10.1016/j.tips.2017.01.003
- Uematsu N, Matsuzaki K. 2000. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys. J. 79: 2075-2083. https://doi.org/10.1016/S0006-3495(00)76455-1
- Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55. https://doi.org/10.1124/pr.55.1.2
- Lee TH, Hall KN, Aguilar MI. 2016. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem. 16: 25-39. https://doi.org/10.2174/1568026615666150703121700
- Kumar P, Kizhakkedathu JN, Straus SK. 2018. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 8(1). pii: E4. doi: 10.3390/biom8010004.
- Lee E, Jeong KW, Lee J, Shin A, Kim JK, Lee J, et al. 2013. Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Rep. 46: 282-287. https://doi.org/10.5483/BMBRep.2013.46.5.252
- Wu Q, Patocka J, Kuca K. 2018. Insect Antimicrobial peptides, a Mini Review. Toxins (Basel). 10(11). pii: E461.
- Henriques ST, Melo MN, Castanho MA. 2006. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399: 1-7. https://doi.org/10.1042/BJ20061100
- Kim JK, Lee E, Shin S, Jeong KW, Lee JY, Bae SY, et al. 2011. Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the swallowtail butterfly, Papilio xuthus. J. Biol. Chem. 286: 41296-41311. https://doi.org/10.1074/jbc.M111.269225
- Jeon D, Jacob B, Kwak C, Kim Y. 2017. Short antimicrobial peptides exhibiting antibacterial and anti-inflammatory activities derived from the N-terminal helix of papiliocin. B. Korean Chem. Soc. 38: 1260-1268. https://doi.org/10.1002/bkcs.11277
- Kim J, Jacob B, Jang M, Kwak C, Lee Y, Son K, et al. 2019. Development of a novel short 12-meric papiliocin-derived peptide that is effective against Gram-negative sepsis. Sci. Rep. 9: 3817. https://doi.org/10.1038/s41598-019-40577-8
- Ma QQ, Shan AS, Dong N, Cao YP, Lv YF, Wang L. 2011. The effects of Leu or Val residues on cell selectivity of alpha-helical peptides. Protein Pept. Lett. 18: 1112-1118. https://doi.org/10.2174/092986611797200968
- Bea Rde L, Petraglia AF, Johnson LE. 2015. Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon. 101: 79-84. https://doi.org/10.1016/j.toxicon.2015.05.006
- Lee E, Kim JK, Jeon D, Jeong KW, Shin A, Kim Y. 2015. Functional roles of aromatic residues and helices of papiliocin in its antimicrobial and anti-inflammatory activities. Sci. Rep. 5: 12048. https://doi.org/10.1038/srep12048
- Lee E, Shin A, Kim Y. 2015. Anti-inflammatory activities of cecropin A and its mechanism of action. Arch. Insect. Biochem. Physiol. 88: 31-44. https://doi.org/10.1002/arch.21193
- Jeon D, Jeong MC, Jacob B, Bang JK, Kim EH, Cheong C, et al. 2017. Investigation of cationicity and structure of pseudin-2 analogues for enhanced bacterial selectivity and antiinflammatory activity. Sci. Rep. 7: 1455. 28 .
- Jnawali HN, Lee E, Jeong KW, Shin A, Heo YS, Kim Y. 2014. Anti-inflammatory activity of rhamnetin and a model of its binding to c-Jun NH2-terminal kinase 1 and p38 MAPK. J. Nat. Prod. 77: 258-263. https://doi.org/10.1021/np400803n
- Jnawali HN, Jeon D, Jeong MC, Lee E, Jin B, Ryoo S, et al. 2016. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin. J. Nat. Prod. 79: 961-969. https://doi.org/10.1021/acs.jnatprod.5b01033
- Moussa HG, Martins AM, Husseini GA. 2015. Review on triggered liposomal drug delivery with a focus on ultrasound. Curr. Cancer. Drug Targets 15: 282-313. https://doi.org/10.2174/1568009615666150311100610
- Watson H. 2015. Biological membranes. Essays Biochem. 59: 43-69. https://doi.org/10.1042/bse0590043
- Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. 2017. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci. 11: 73.
- Epand RM, Epand RF. 2009. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim. Biophys. Acta 1788: 289-294. https://doi.org/10.1016/j.bbamem.2008.08.023
- Dowhan W. 1997. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66: 199-232. https://doi.org/10.1146/annurev.biochem.66.1.199
- Mingeot-Leclercq MP, Decout JL. 2016. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. Medchemcomm 7: 586-611. https://doi.org/10.1039/c5md00503e
- Sohlenkamp C, Geiger O. 2016. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol. Rev. 40: 133-159. https://doi.org/10.1093/femsre/fuv008
- Murzyn K, Rog T, Pasenkiewicz-Gierula M. 2005. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88: 1091-1103. https://doi.org/10.1529/biophysj.104.048835
- Epand RM, Epand RF, Savage PB. 2008. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News Perspect. 21: 307-311. https://doi.org/10.1358/dnp.2008.21.6.1246829
- Pichler H, Emmerstorfer-Augustin A. 2018. Modification of membrane lipid compositions in single-celled organisms - From basics to applications. Methods 147: 50-65. https://doi.org/10.1016/j.ymeth.2018.06.009
- Gopal R, Seo CH, Song PI, Park Y. 2013. Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 44: 645-660. https://doi.org/10.1007/s00726-012-1388-6
- Coccia C, Rinaldi AC, Luca V, Barra D, Bozzi A, Di Giulio A, et al. 2011. Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. Eur. Biophys. J. 40: 577-588. https://doi.org/10.1007/s00249-011-0681-8
- Lee JU, Park KH, Lee JY, Kim J, Shin SY, Park Y, et al. 2008. Cell selectivity of arenicin-1 and its derivative with two disulfide bonds. Bull. Korean Chem. Soc. 29: 1190-1194. https://doi.org/10.5012/bkcs.2008.29.6.1190
- Gotts JE, Matthay MA. 2016. Sepsis: pathophysiology and clinical management. BMJ 353: i1585. https://doi.org/10.1136/bmj.i1585
- Ryu DW, Kim HA, Song H, Kim S, Lee M. 2011. Amphiphilic peptides with arginines and valines for the delivery of plasmid DNA. J. Cell. Biochem. 112: 1458-1466. https://doi.org/10.1002/jcb.23064
- de Jesus AJ, Allen TW. 2013. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim. Biophys. Acta 1828: 864-876. https://doi.org/10.1016/j.bbamem.2012.09.009
- Chan DI, Prenner EJ, Vogel HJ. 2006. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 1758: 1184-1202. https://doi.org/10.1016/j.bbamem.2006.04.006
- Schibli DJ, Epand RF, Vogel HJ, Epand RM. 2002. Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell Biol. 80: 667-677. https://doi.org/10.1139/o02-147
Cited by
- Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae vol.30, pp.9, 2019, https://doi.org/10.4014/jmb.2003.03009
- Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia vol.31, pp.1, 2019, https://doi.org/10.4014/jmb.2011.11011