DOI QR코드

DOI QR Code

Oral Administration of β-Glucan and Lactobacillus plantarum Alleviates Atopic Dermatitis-Like Symptoms

  • Kim, In Sung (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Lee, Seung Ho (Department of Nano-Bioengineering, Incheon National University) ;
  • Kwon, Young Min (Department of Poultry Science, University of Arkansas) ;
  • Adhikari, Bishnu (Department of Poultry Science, University of Arkansas) ;
  • Kim, Jeong A (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Yu, Da Yoon (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Kim, Gwang Il (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Lim, Jong Min (Glucan Corporation) ;
  • Kim, Sung Hak (Department of Animal Science, Chonnam National University) ;
  • Lee, Sang Suk (Department of Animal Science and Technology, Sunchon National University) ;
  • Moon, Yang Soo (Department of Animal Science and Biotechnology, Gyeongnam National University of Science and Technology) ;
  • Choi, In Soon (Department of Life Science, Silla University) ;
  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • Received : 2019.07.04
  • Accepted : 2019.09.02
  • Published : 2019.11.28

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease of mainly infants and children. Currently, the development of safe and effective treatments for AD is urgently required. The present study was conducted to investigate the immunomodulatory effects of yeast-extracted β-1,3/1,6-glucan and/or Lactobacillus plantarum (L. plantarum) LM1004 against AD-like symptoms. To purpose, β-1,3/1,6-glucan and/or L. plantarum LM1004 were orally administered to AD-induced animal models of rat (histamine-induced vasodilation) and mouse (pruritus and contact dermatitis) exhibiting different symptoms of AD. We then investigated the treatment effects on AD-like symptoms, gene expression of immune-related factors, and gut microbiomes. Oral administration of β-1,3/1,6-glucan (0.01 g/kg initial body weight) and/or 2 × 1012 cells/g L. plantarum LM1004 (0.01 g/kg initial body weight) to AD-induced animal models showed significantly reduced vasodilation in the rat model, and pruritus, edema, and serum histamine in the mouse models (p < 0.05). Interestingly, β-1,3/1,6-glucan and/or L. plantarum LM1004 significantly decreased the mRNA levels of Th2 and Th17 cell transcription factors, while the transcription factors of Th1 and Treg cells, galactin-9, filaggrin increased, which are indicative of enhanced immunomodulation (p < 0.05). Moreover, in rats with no AD induction, the same treatments significantly increased the relative abundance of phylum Bacteroidetes and the genus Bacteroides. Furthermore, bacterial taxa associated with butyrate production such as, Lachnospiraceae and Ruminococcaceae at family, and Roseburia at genus level were increased in the treated groups. These findings suggest that the dietary supplementation of β-1,3/1,6-glucan and/or L. plantarum LM1004 has a great potential for treatment of AD as well as obesity in humans through mechanisms that might involve modulation of host immune systems and gut microbiota.

Keywords

References

  1. Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA. 2004. New insights into atopic dermatitis. J. Clin. Invest. 113: 651-657. https://doi.org/10.1172/JCI21060
  2. Leung DY. 1999. Pathogenesis of atopic dermatitis. J. Allergy Clin. Immunol. 104: 99-108. https://doi.org/10.1016/S0091-6749(99)70150-8
  3. Sano Y, Masuda K, Tamagawa-Mineoka R, Matsunaka H, Murakami Y, Yamashita R, et al. 2013. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin. Exp. Immunol. 171: 330-337. https://doi.org/10.1111/cei.12021
  4. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3: 673-680. https://doi.org/10.1038/ni805
  5. Noda S, Krueger JG, Guttman-Yassky E. 2015. The translational revolution and use of biologics in patients with inflammatory skin diseases. J. Allergy Clin. Immunol. 135: 324-336. https://doi.org/10.1016/j.jaci.2014.11.015
  6. Young CA, Rorke EA, Adhikary G, Xu W, Eckert RL. 2017. Loss of epidermal AP1 transcription factor function reduces filaggrin level, alters chemokine expression and produces an ichthyosis-related phenotype. Cell Death Dis. 8: e2840. https://doi.org/10.1038/cddis.2017.238
  7. Cooper KD. 1994. Atopic dermatitis: recent trends in pathogenesis and therapy. J. Invest. Dermatol. 102: 128-137. https://doi.org/10.1111/1523-1747.ep12371746
  8. Sidbury R, Hnifin JM. 2000. Old, new, and emerging therapies for atopic dermatitis. Dermatol. Clin. 18: 1-11. https://doi.org/10.1016/s0733-8635(05)70141-8
  9. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. 2001.
  10. Klein G, Pack A, Bonaparte C, Reuter G. 1998. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 41: 103-125. https://doi.org/10.1016/S0168-1605(98)00049-X
  11. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
  12. Kim YH. 2016. Probiotics, prebiotics, synbiotics and human health. BT. News 23: 17-22.
  13. Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, et al. 2003. Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J. Nutr. 133: 468-475. https://doi.org/10.1093/jn/133.2.468
  14. Babicek K, Cechova I, Simon RR, Harwood M, Cox DJ. 2007. Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem. Toxicol. 45: 1719-1730. https://doi.org/10.1016/j.fct.2007.03.013
  15. Kim SC, Kim HS, Cho YU, Ryu JS, Cho SJ. 2015. Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher ${\beta}$-glucan. J. Mushrooms 13: 79-83. https://doi.org/10.14480/JM.2015.13.1.79
  16. Kim JH, Kim MR, Lee JH, Lee JW, Kim SK. 2000. Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol. Lett. 22: 987-990. https://doi.org/10.1023/A:1005681019573
  17. Kraus J, Blaschek W, Schutz M, Franz G. 1992. Antitumor activity of cell wall ${\beta}$-1,3/1,6-glucans from Phytophthora species. Planta Med. 58: 39-42. https://doi.org/10.1055/s-2006-961386
  18. Mercenier A, Pavan S, Pot B. 2003. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr. Pharm. Des. 9: 175-191. https://doi.org/10.2174/1381612033392224
  19. Prescott SL, Dunstan JA, Hale J, Breckler L, Lehmann H, Weston S, et al. 2005. Clinical effects of probiotics are associated with increased interferon-gamma responses in very young children with atopic dermatitis. Clin. Exp. Allergy 35: 1557-1564. https://doi.org/10.1111/j.1365-2222.2005.02376.x
  20. Peng GC, Hsu CH. 2005. The efficacy and safety of heatkilled Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house-dust mite. Pediatr. Allergy Immunol. 16: 433-438. https://doi.org/10.1111/j.1399-3038.2005.00284.x
  21. Kim IS, Lee SH, Kim JA, Yu DY, Hong YH, Kim JY, et al. 2018. Effect of oral administration of ${\beta}$-glucan derived from Aureobasidium pullulans SM-2001 in model mice and rat with atopic dermatitis-like phenotypes. Food Sci. Biotechnol. 27: 1185-1192. https://doi.org/10.1007/s10068-018-0322-4
  22. Seo HP, Kim JM, Shin HD, Kim TG, Jang HJ, Park BR, et al. 2002. Production of ${\beta}$-1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Korean J. Biotechnol. Bioeng. 17: 376-380.
  23. Ishiguro K, Oku H, Suitani A, Yamamoto Y. 2002. Effects of conjugated linoleic acid on anaphylaxis and allergic pruritus. Biol. Pharm. Bull. 25: 1655-1657. https://doi.org/10.1248/bpb.25.1655
  24. Katayama S, Shionoya H, Ohtake S. 1978. A new method for extraction of extravasated dye in the skin and the influence of fasting stress on passive cutaneous anaphylaxis in guinea pigs and rate. Microbiol. Immunol. 22: 89-101. https://doi.org/10.1111/j.1348-0421.1978.tb00352.x
  25. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. https://doi.org/10.1006/abio.1987.9999
  26. Hwang JS, Kim JE, Yu YB, Im SH. 2013. Modulation of experimental atopic dermatitis by topical application of Gami-Cheongyeul-Sodok-Eum. BMC Complement. Altern. Med. 13: 312. https://doi.org/10.1186/1472-6882-13-312
  27. van Hamburg JP, de Bruijn MJ, Ribeiro de Almeida C, van Zwam M, van Meurs M, de Haas E, et al. 2008. Enforced expression of GATA3 allows differentiation of IL-17-producing cells, but constrains Th17-mediated pathology. Eur. J. Immunol. 38: 2573-2586. https://doi.org/10.1002/eji.200737840
  28. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. 2010. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl. Acad. Sci. USA 107: 2159-2164. https://doi.org/10.1073/pnas.0904055107
  29. Chabot S, Kashio Y, Seki M, Shirato Y, Nakamura K, Nishi N, et al. 2002. Regulation of galectin-9 expression and release in Jurkat T cell line cells. Glycobiology 12: 111-118. https://doi.org/10.1093/glycob/12.2.111
  30. Shin JH, Chung MJ, Seo JG. 2016. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of CD4+Foxp3+ T cells. Food Nutr. Res. 60: 32550. https://doi.org/10.3402/fnr.v60.32550
  31. Ohtsuka E, Kawai S, Ichikawa T, Nojima H, Kitagawa K, Shirai Y, et al. 2001. Roles of mast cells and histamine in mosquito bite-induced allergic itch-associated responses in mice. Jpn. J. Pharmacol. 86: 97-105. https://doi.org/10.1254/jjp.86.97
  32. Eisen HN, Belmam S. 1953. Studies of hypersensitivity to low molecular weight substances. II. Reactions of some allergenic substituted dinitrobenzenes with cysteine or cystine of skin proteins. J. Exp. Med. 98: 533-549. https://doi.org/10.1084/jem.98.6.533
  33. Matsuda H, Tomohiro N, Ido Y, Kubo M. 2002. Anti-allergic effects of cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol. Pharm. Bull. 25: 809-812. https://doi.org/10.1248/bpb.25.809
  34. Yoon SH, Ha SM, Kwon S , Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  35. Derakhshani H, Tun HM, Khafipour E. 2016. An extended single index multiplexed 16S rRNA sequencing for microbial community analysis on MiSeq Illumina platforms. J. Basic Microbiol. 56: 321-326. https://doi.org/10.1002/jobm.201500420
  36. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11: 1-42. https://doi.org/10.2307/3001478
  37. Niki T, Tsutsui S, Hirose S, Aradono S, Sugimoto Y, Takeshita K, et al. 2009. Galectin-9 is a high affinity IgEbinding lectin with anti-allergic effect by blocking IgEantigen complex formation. J. Biol. Chem. 284: 32344-32352. https://doi.org/10.1074/jbc.M109.035196
  38. Seki M, Oomizu S, Sakata KM, Sakata A, Arikawa T, Watanabe K, et al. 2008. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 127: 78-88. https://doi.org/10.1016/j.clim.2008.01.006
  39. Ryu JC, Lee JG, Ku SK, Jee SY. 2009. Effect of sopung-san extracts on the passive cutaneous anaphylaxis of Wistar rats (Type I allergic dermatitis). J. Korean Med. Ophthalmol., Otolaryngol. Dermatol. 22: 1-10.
  40. Rothschild AM, Gomes EL, Rossi MA. 1991. Reversible rat mesenteric mast cell swelling caused by vagal stimulation or sham-feeding. Agents Actions 34: 295-301. https://doi.org/10.1007/bf01988719
  41. Inagaki N, Miura T, Nagai H, Ono Y, Koda A. 1988. Inhibition of vascular permeability increase in mice. An additional anti-allergic mechanism of glucocorticoids. Int. Arch. Allergy Appl. Immunol. 87: 254-259. https://doi.org/10.1159/000234681
  42. Byun DG, Kim JW. 1996. Influence of cytokines on the development of T cell subsets. Pediatr. Allergy Respir. Dis. 6: 20-32.
  43. Haw CR. 1996. Skin allergy. J. Kyung Hee Univ. Med. Cent. 12: 108-116.
  44. Bunker CB, Foreman JC, Dowd PM. 1991. Vascular responses to histamine at low temperatures in normal digital skin and Raynaud’s phenomenon. Agents Actions 33: 197-199. https://doi.org/10.1007/bf01993166
  45. Powrie F, Coffman RL. 1993. Cytokine regulation of T-cell function: potential for therapeutic intervention. Trends Pharmacol. Sci. 14: 164-168. https://doi.org/10.1016/0165-6147(93)90202-U
  46. Kim MS, Na HJ, Han SW, Jin JS, Song UY, Lee EJ, et al. 2003. Forsythia fructus inhibits the mast-cell-mediated allergic inflammatory reaction. Inflammation 27: 129-135. https://doi.org/10.1023/A:1023865727780
  47. Sugimoto Y, Umakoshi K, Nojiri N, Kamei C. 1998. Effects of histamine H1 receptor antagonists on Compound 48/80-induced scratching behavior in mice. Eur. J. Pharmacol. 351: 1-5. https://doi.org/10.1016/S0014-2999(98)00288-X
  48. Shinmei Y, Hossen MA, Okihara K, Sugimoto H, Yamada H, Kamei C. 2004. Effect of Brazilian propolis on scratching behavior induced by Compound 48/80 and histamine in mice. Int. Immunopharmacol 4: 1431-1436. https://doi.org/10.1016/j.intimp.2004.06.007
  49. Nagai H, Matsuo A, Hiyama H, Inagaki N, Kawada K. 1997. Immunoglobulin E production in mice by means of contact sensitization with a simple chemical, hapten. J. Allergy Clin. Immunol. 100: 39-44. https://doi.org/10.1016/S0091-6749(97)70192-1
  50. Ueda Y, Sone T, Inagaki N, Nagai H. 2003. Effects of prednisolone on the cutaneous reaction and skin barrier function in mice treated with a hapten. Biol. Pharm. Bull. 26: 618-621. https://doi.org/10.1248/bpb.26.618
  51. Watanabe C, Satoh T, Tahara E, Murakami K, Hayashi K, Hase K, et al. 1999. Inhibitory mechanisms of glycoprotein fraction derived from Miscanthus sinensis for the immediate phase response of an IgE-mediated cutaneous reaction. Biol. Pharm. Bull. 22: 26-30. https://doi.org/10.1248/bpb.22.26
  52. Romagnani S. 2000. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85: 9-18. https://doi.org/10.1016/S1081-1206(10)62426-X
  53. Belardelli F. 1995. Role of interferons and other cytokines in the regulation of the immune response. APMIS 103: 161-179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x
  54. Kidd P. 2003. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altem. Med. Rev. 8: 223-246.
  55. Romagnani S. 2000. The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol. 105: 399-408. https://doi.org/10.1067/mai.2000.104575
  56. Stone KD, Prussin C, Metcalfe DD. 2010. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 125: 73-80.
  57. Korn T, Oukka M, Kuchroo V, Bettelli E. 2007. Th17 cells : effector T cells with inflammatory properties. Semin. Immunol. 19: 362-371. https://doi.org/10.1016/j.smim.2007.10.007
  58. Lubberts E, Schwarzenberger P, Huang W, Schurr JR, Peschon JJ, van den Berg WB, et al. 2005. Requirement of IL-17 receptor signaling in radiation-resistant cells in the joint for full progression of destructive synovitis. J. Immunol. 175: 3360-3368. https://doi.org/10.4049/jimmunol.175.5.3360
  59. Palomeres O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA. 2010. Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol. 40: 1232-1240. https://doi.org/10.1002/eji.200940045
  60. Dai S Y, N akagawa R, I toh A , Murakami H , Kashio Y , Abe H, et al. 2005. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J. Immunol. 175: 2974-2981. https://doi.org/10.4049/jimmunol.175.5.2974
  61. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B, van Esch BC, et al. 2012. Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67: 343-352. https://doi.org/10.1111/j.1398-9995.2011.02771.x
  62. Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T, Morino-Koga S, et al. 2015. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 80: 83-88. https://doi.org/10.1016/j.jdermsci.2015.07.011
  63. Murray IA, Nichols RG, Zhang L, Patterson AD, Perdew GH. 2016. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Sci. Rep. 6: 33969. https://doi.org/10.1038/srep33969
  64. Furue M, Chiba T, Tsuji G, Ulzii D, Kido-Nakahara M, Nakahara T, et al. 2017. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol. Int. 66: 398-403. https://doi.org/10.1016/j.alit.2016.12.002
  65. Kim HJ, Kim YJ, Lee SH, Yu J, Jeong SK, Hong SJ. 2014. Effects of Lactobacillus rhamnosus on allergic march model by suppressing Th2, Th17, and TSLP responses via CD4$^+$ CD25$^+$ Foxp3$^+$ Tregs. Clin. Immunol. 153: 178-186. https://doi.org/10.1016/j.clim.2014.04.008
  66. Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. 2003. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor. J. Exp. Med. 197: 1107-1117. https://doi.org/10.1084/jem.20021787
  67. Thornton BP, Vetvicka V, Pitman M, Goldman RC, Ross GD. 1996. Analysis of the sugar specificity and molecular location of the beta-Glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156: 1235-1246.
  68. Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Mitra S, et al. 2010. Oral administration of Paramylon, a ${\beta}$-1,3-DGlucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Vet. Med. Sci. 72: 755-763. https://doi.org/10.1292/jvms.09-0526
  69. Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M. 2002. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 56: 21-26. https://doi.org/10.1038/sj.ejcn.1601278
  70. Harata G, He F, Kawase M, Hosono A, Takahashi K, Kaminogawa S. 2009. Differentiated implication of Lactobacillus GG and L. gasseri TMC0356 to immune responses of murine Peyer's patch. Microbiol. Immunol. 53: 475-480. https://doi.org/10.1111/j.1348-0421.2009.00146.x
  71. Liu M, Zheng S, Wang X, Wen Z. 1999. Regulatory roles of IL-12, IL-4, and IFN-gamma on IgE synthesis in atopic patients. Chin. Med. J. 112: 550-553.
  72. De Filippo C, Cabalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from europe and rural Africa. Proc. Natl. Acad. Sci. USA 107: 14691-14696.
  73. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166. https://doi.org/10.1038/nm.3444
  74. Vulevic J, Juric A, Walton GE, Claus SP, Tzortzis G, Toward RE, et al. 2015. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr. 114: 586-595. https://doi.org/10.1017/S0007114515001889
  75. Song Y, Könönen E, Rautio M, Liu C, Bryk A, Eerola E, et al. 2006. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int. J. Syst. Evol. Microbiol. 56: 1985-1990. https://doi.org/10.1099/ijs.0.64318-0
  76. Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS, Shouche YS, Ghaskadbi SS. 2017. Gut microbial diversity assessment of indian type-2-diabetics reveals alterations in eubacteria, archaea, and eukaryotes. Front. Microbiol. 8: 214.
  77. Duncan SH, Louis P, Flint HJ. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 70: 5810-5817. https://doi.org/10.1128/AEM.70.10.5810-5817.2004
  78. Anand S, Kaur H, Mande SS. 2016. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front. Microbiol. 7: 1945.
  79. Jin H, He R, Oyoshi M, Geha RS. 2009. Animal models of atopic dermatitis. J. Invest. Dermatol. 129: 31-40. https://doi.org/10.1038/jid.2008.106
  80. Martel BC, Lovato P, Baumer W, Olivry T. 2017. Traslational animal models of atopic dermatitis for preclinical studies. Yale J. Biol. Med. 90: 389-402.

Cited by

  1. Effects of the Soil-Derived Microorganism BX-1 on Chicken Newcastle Disease vol.10, pp.1, 2019, https://doi.org/10.4236/aid.2020.101001
  2. Atopic Dermatitis as a Multifactorial Skin Disorder. Can the Analysis of Pathophysiological Targets Represent the Winning Therapeutic Strategy? vol.13, pp.11, 2019, https://doi.org/10.3390/ph13110411
  3. Oat beta glucans anti-inflammatory actions in leg exercise stress vol.51, pp.1, 2021, https://doi.org/10.1108/nfs-01-2020-0011
  4. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic vol.12, 2021, https://doi.org/10.3389/fmicb.2021.712236
  5. Anti-Inflammatory and Immune Modulatory Effects of Synbio-Glucan in an Atopic Dermatitis Mouse Model vol.13, pp.4, 2021, https://doi.org/10.3390/nu13041090
  6. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers vol.100, pp.9, 2021, https://doi.org/10.1016/j.psj.2021.101343