DOI QR코드

DOI QR Code

Cloning and Heterologous Expression of the β-Galactosidase Gene from Bifidobacterium longum RD47 in B. bifidum BGN4

  • Park, Min Ju (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Park, Myeong Soo (Research Center, BIFIDO Co., Ltd.) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2019.05.31
  • Accepted : 2019.09.27
  • Published : 2019.11.28

Abstract

The gene encoding β-galactosidase was cloned from Bifidobacterium longum RD47 with combinations of several bifidobacterial promoters, and expressed in B. bifidum BGN4. Among the recombinant bifidobacteria, BGN4+G1 showed the highest β-galactosidase level, for which the hydrolytic activity was continuously 2.5 to 4.2 times higher than that of BGN4 and 4.3 to 9.6 times higher than that of RD47. The β-galactosidase activity of BGN4+G1 was exceedingly superior to that of any of the other 35 lactic acid bacteria. When commercial whole milk and BGN4+G1 were reacted, BGN4+G1 removed nearly 50% of the lactose in the milk by the 63-h time point, and a final 61% at 93 h. These figures are about twice the lactose removal rate of conventional fermented milk. As for the reaction of commercial whole milk and crude enzyme extract from BGN4+G1, the β-galactosidase of BGN4+G1 eliminated 51% of the lactose in milk in 2 h. As shown below, we also compared the strengths and characteristics of the strong bifidobacterial promoters reported by previous studies.

Keywords

References

  1. Nguyen T-T, Nguyen H-M, Geiger B, Mathiesen G, Eijsink VG, Peterbauer CK. 2015. Heterologous expression of a recombinant lactobacillal $\beta$-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin Pbased expression system. Microb. Cell Fact. 14: 30. https://doi.org/10.1186/s12934-015-0214-8
  2. Yuan T, Yang P, Wang Y, Meng K, Luo H, Zhang W. 2008. Heterologous expression of a gene encoding a thermostable $\beta$-galactosidase from Alicyclobacillus acidocaldarius. Biotechnol. Lett. 30: 343-348. https://doi.org/10.1007/s10529-007-9551-y
  3. Kamran A, Bibi Z, Aman A, Qader SAU. 2016. Lactose hydrolysis approach: isolation and production of $\beta$-galactosidase from newly isolated Bacillus strain B-2. Biocatal. Agric. Biotechnol. 5: 99-103. https://doi.org/10.1016/j.bcab.2015.12.010
  4. Nguyen TH, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD. 2006. Purification and characterization of two novel $\beta$-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54: 4989-4998. https://doi.org/10.1021/jf053126u
  5. Splechtna B, Nguyen TH, Zehetner R, Lettner HP, Lorenz W, Haltrich D. 2007. Process development for the production of prebiotic galacto-oligosaccharides from lactose using $\beta$-galactosidase from Lactobacillus sp. Biotechnol. J. 2: 480-485. https://doi.org/10.1002/biot.200600230
  6. Sani R, Chakraborti S, Sobti R, Patnaik P, Banerjee U. 1999. Characterization and some reaction-engineering aspects of thermostable extracellular $\beta$-galactosidase from a new Bacillus species. Folia Microbiol. 44: 367. https://doi.org/10.1007/BF02903706
  7. Gänzle MG, Haase G, Jelen P. 2008. Lactose: crystallization, hydrolysis and value-added derivatives. Int. Dairy J. 18: 685-694. https://doi.org/10.1016/j.idairyj.2008.03.003
  8. Nguyen T-T, Nguyen HA, Arreola SL, Mlynek G, Djinovic'-Carugo K, Mathiesen G. 2012. Homodimeric $\beta$-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J. Agric. Food Chem. 60: 1713-1721. https://doi.org/10.1021/jf203909e
  9. Moller PL, Jorgensen F, Hansen OC, Madsen SM, Stougaard P. 2001. Intra-and extracellular $\beta$-galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression, and comparative characterization. Appl. Environ. Microbiol. 67: 2276-2283. https://doi.org/10.1128/AEM.67.5.2276-2283.2001
  10. Hsu CA, Lee SL, Chou CC. 2007. Enzymatic production of galactooligosaccharides by $\beta$-galactosidase from Bifidobacterium longum BCRC 15708. J. Agric. Food Chem. 55: 2225-2230. https://doi.org/10.1021/jf063126+
  11. Chanalia P, Gandhi D, Attri P, Dhanda S. 2018. Purification and characterization of $\beta$-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorg. Chem. 77: 176-189. https://doi.org/10.1016/j.bioorg.2018.01.006
  12. Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA. 2016. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr. Res. 79: 445. https://doi.org/10.1038/pr.2015.244
  13. Tissier H. 1900. Recherchers sur la Flora Intestinale Normale et Pathologique du Nourisson. University of Paris. Thesis:1-253
  14. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C. 2015. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci. Rep. 5: 15782. https://doi.org/10.1038/srep15782
  15. Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10: 323. https://doi.org/10.1038/nrmicro2746
  16. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7: 979.
  17. Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L. 2018. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell. Mol. Life Sci. 75: 103-118. https://doi.org/10.1007/s00018-017-2672-0
  18. James K, Motherway MOC, Bottacini F, Van Sinderen D. 2016. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose through overlapping, yet distinct pathways. Sci. Rep. 6: 38560. https://doi.org/10.1038/srep38560
  19. O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. 2013. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC 2003. Microb. Biotechnol. 6: 67-79. https://doi.org/10.1111/1751-7915.12011
  20. Roy D, Berger JL, Reuter G. 1994. Characterization of dairyrelated Bifidobacterium spp. based on their $\beta$-galactosidase electrophoretic patterns. Int. J. Food Microbiol. 23: 55-70. https://doi.org/10.1016/0168-1605(94)90221-6
  21. Smart JB, Pillidge CJ, Garman JH. 1993. Growth of lactic acid bacteria and bifidobacteria on lactose and lactoserelated mono-, di-and trisaccharides and correlation with distribution of $\beta$-galactosidase and phospho-$\beta$-galactosidase. J. Dairy Res. 60: 557-568. https://doi.org/10.1017/S0022029900027904
  22. Van Laere KM, Abee T, Schols HA, Beldman G, Voragen AG. 2000. Characterization of a Novel $\beta$-Galactosidase from Bifidobacterium adolescentis DSM 20083 Active towards Transgalactooligosaccharides. Appl. Environ. Microbiol. 66: 1379-1384. https://doi.org/10.1128/AEM.66.4.1379-1384.2000
  23. Han YR, Youn SY, Ji GE, Park MS. 2014. Production of $\alpha$-and $\beta$-galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682. https://doi.org/10.4014/jmb.1402.02037
  24. Oh SY, Youn SY, Park MS, Kim HG, Baek NI, Li Z. 2017. Synthesis of $\beta$-galactooligosaccharide using bifidobacterial $\beta$-galactosidase purified from recombinant Escherichia coli. J. Microbiol. Biotechnol. 27: 1392-1400. https://doi.org/10.4014/jmb.1702.02058
  25. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  26. Marsili R, Ostapenko H, Simmons R, Green D. 1981. High performance liquid chromatographic determination of organic acids in dairy products. J. Food Sci. 46: 52-57. https://doi.org/10.1111/j.1365-2621.1981.tb14529.x
  27. Kim IH, Park MS, Ji GE. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte-like Caco-2 cells. J. Microbiol. Biotechnol. 13: 276-281.
  28. Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol. 18: 749-754.
  29. Lee MJ, Zang Z, Choi EY, Shin HK, Ji GE. 2002. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J. Microbiol. Biotechnol. 12: 398-405.
  30. Kim N, Ji GE. 2006. Modulatory activity of Bifidobacterium sp. BGN4 cell fractions on immune cells. J. Microbiol. Biotechnol. 16: 584-589.
  31. Lee S, Koo N, Oh S. 2006. Regulatory effect on specific ige response of Bifidobacterium Bifidum (bgn4 Strain) in murine model of peanut allergy. J. Allergy Clin. Immunol. 117(2).
  32. Kim N, Kunisawa J, Kweon MN, Eog Ji GE, Kiyono H. 2007. Oral feeding of Bifidobacterium bifidum ( BGN4) prevents CD4(+) CD45RB(high) T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation. Clin. Immunol. 123: 30-39. https://doi.org/10.1016/j.clim.2006.11.005
  33. Hong KS, Kang HW, Im JP, Ji GE, Kim SG, Jung HC. 2009. Effect of probiotics on symptoms in Korean adults with irritable bowel syndrome. Gut Liver. 3: 101-107. https://doi.org/10.5009/gnl.2009.3.2.101
  34. You HJ, Oh DK, Ji GE. 2004. Anticancerogenic effect of a novel chiroinositol-containing polysaccharide from Bifidobacterium bifidum BGN4. FEMS Microbiol. Lett. 240: 131-136. https://doi.org/10.1016/j.femsle.2004.09.020
  35. Park MJ, Park MS, Ji GE. 2018. Improvement of electroporationmediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level. J. Microbiol. Methods. 159: 112-119. https://doi.org/10.1016/j.mimet.2018.11.019
  36. Youn SY, Park MS, Ji GE. 2012. Identification of the $\beta$-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 22: 1714-1723. https://doi.org/10.4014/jmb.1208.08028
  37. Wang Y, Kim JY, Park MS, Ji GE. 2012. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high-level gene expression. J. Microbiol. 50: 638-643. https://doi.org/10.1007/s12275-012-1591-x
  38. McCracken A, Turner MS, Giffard P, Hafner LM, Timms P. 2000. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch. Microbiol. 173: 383-389. https://doi.org/10.1007/s002030000159
  39. Li J, Zhang Y. 2014. Relationship between promoter sequence and its strength in gene expression. Eur. Phys. J. E. Soft Matter 37(9): 44. https://doi.org/10.1140/epje/i2014-14086-1
  40. Jensen PR, Hammer K. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87. https://doi.org/10.1128/aem.64.1.82-87.1998
  41. Helmann JD. 1995. Compilation and analysus of Bacillus Subtilis ${\sigma}$ A-dependent promoter sequences: evidence for extended contact between RNA polymerse and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360. https://doi.org/10.1093/nar/23.13.2351
  42. Estrem ST, Gaal T, Ross W, Gourse RL. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766. https://doi.org/10.1073/pnas.95.17.9761
  43. Kumar A, Bansal M. 2018. Modulation of Gene Expression by Gene Architecture and Promoter Structure. IntechOpen 76051: 37-53.
  44. Hsu C, Yu R, Chou C. 2005. Production of $\beta$-galactosidase by Bifidobacteria as influenced by various culture conditions. Int. J. Food Microbiol. 104: 197-206. https://doi.org/10.1016/j.ijfoodmicro.2005.02.010
  45. Hsu CA, Yu RC, Chou CC. 2006. Purification and characterization of a sodium-stimulated $\beta$-galactosidase from Bifidobacterium longum CCRC 15708. World J. Microbiol. Biotechnol. 22: 355-361. https://doi.org/10.1007/s11274-005-9041-0
  46. Bidart GN, Rodriguez-Diaz J, Perez-Martinez G, Yebra MJ. 2018. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 n-acetyllactosamine. Sci. Rep. 8: 7152. https://doi.org/10.1038/s41598-018-25660-w
  47. Chan V, Dreolini LF, Flintoff KA, Lloyd SJ, Mattenley AA. 2002. The effects of glycerol, glucose, galactose, lactose and glucose with galactose on the induction of $\beta$-galactosidase in Escherichia coli. J. Exp. Microbiol. Immunol. 2: 130-137.
  48. Ilyes H, Fekete E, Karaffa L, Fekete E, Sandor E, Szentirmai A. 2004. CreA-mediated carbon catabolite repression of $\beta$-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol. Lett. 235: 147-151. https://doi.org/10.1111/j.1574-6968.2004.tb09579.x
  49. Inchaurrondo V, Flores M, Voget C. 1998. Growth and $\beta$-galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J. Ind. Microbiol. Biotechnol. 20: 291-298. https://doi.org/10.1038/sj/jim/2900526
  50. Ullmann A. 1996. Catabolite repression: a story without end. Res. Microbiol. 147: 455-458. https://doi.org/10.1016/0923-2508(96)83999-4
  51. Saier Jr MH, Ramseier TM. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178: 3411-3417. https://doi.org/10.1128/jb.178.12.3411-3417.1996
  52. Gory L, Montel MC, Zagorec M. 2001. Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194: 127-133. https://doi.org/10.1016/S0378-1097(00)00515-2
  53. Ceroni F, Algar R, Stan GB, Ellis T. 2015. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods. 12: 415-418. https://doi.org/10.1038/nmeth.3339
  54. Silva F, Queiroz JA, Domingues FC. 2012. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol. Adv. 30: 691-708. https://doi.org/10.1016/j.biotechadv.2011.12.005
  55. Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN. 2018. Burden-driven feedback control of gene expression. Nat. Methods. 15: 387-393. https://doi.org/10.1038/nmeth.4635
  56. Carneiro S, Ferreira EC, Rocha I. 2013. Metabolic responses to recombinant bioprocesses in Escherichia coli. J. Biotechnol. 164: 396-408. https://doi.org/10.1016/j.jbiotec.2012.08.026
  57. Oliveira PH, Prazeres DM, Monteiro GA. 2009. Deletion formation mutations in plasmid expression vectors are unfavored by runaway amplification conditions and differentially selected under kanamycin stress. J. Biotechnol. 143: 231-238. https://doi.org/10.1016/j.jbiotec.2009.08.002
  58. Harju M, Kallioinen H, Tossavainen O. 2012. Lactose hydrolysis and other conversions in dairy products: Technological aspects. Int. Dairy J. 22: 104-109. https://doi.org/10.1016/j.idairyj.2011.09.011
  59. Ohlsson JA, Johansson M, Hansson H, Abrahamson A, Byberg L, Smedman A. 2017. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 73: 151-154. https://doi.org/10.1016/j.idairyj.2017.06.004
  60. Dekker PJ, Koenders D, Bruins MJ. 2019. Lactose-free dairy products: market developments, production, nutrition and health benefits. Nutrients 11(3). pii: 551. https://doi.org/10.3390/nu11030551
  61. Becerra M, Prado SD, Cerdan E, Siso MG. 2001. Heterologous Kluyveromyces lactis $\beta$-galactosidase secretion by Saccharomyces cerevisiae super-secreting mutants. Biotechnol. Lett. 23: 33-40. https://doi.org/10.1023/a:1026795706520
  62. Ding H, Zhou L, Zeng Q, Yu Y, Chen B. 2018. Heterologous expression of a thermostable $\beta$-1, 3-galactosidase and its potential in synthesis of galactooligosaccharides. Mar. Drugs. 16(11). pii: E415.
  63. Park MS, Shin DW, Lee KH, Ji GE. 1999. Sequence analysis of plasmid pKJ50 from Bifidobacterium longum. Microbiology 145: 585-592. https://doi.org/10.1099/13500872-145-3-585
  64. Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol. 46: 231-241. https://doi.org/10.1016/S0168-1605(98)00197-4
  65. Park M-S, Moon H-W, Ji GE. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.

Cited by

  1. Antioxidant and Anti-Inflammatory Properties of Recombinant Bifidobacterium bifidum BGN4 Expressing Antioxidant Enzymes vol.9, pp.3, 2019, https://doi.org/10.3390/microorganisms9030595
  2. Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4 vol.20, pp.1, 2019, https://doi.org/10.1186/s12934-020-01505-y