References
-
Nguyen T-T, Nguyen H-M, Geiger B, Mathiesen G, Eijsink VG, Peterbauer CK. 2015. Heterologous expression of a recombinant lactobacillal
$\beta$ -galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin Pbased expression system. Microb. Cell Fact. 14: 30. https://doi.org/10.1186/s12934-015-0214-8 -
Yuan T, Yang P, Wang Y, Meng K, Luo H, Zhang W. 2008. Heterologous expression of a gene encoding a thermostable
$\beta$ -galactosidase from Alicyclobacillus acidocaldarius. Biotechnol. Lett. 30: 343-348. https://doi.org/10.1007/s10529-007-9551-y -
Kamran A, Bibi Z, Aman A, Qader SAU. 2016. Lactose hydrolysis approach: isolation and production of
$\beta$ -galactosidase from newly isolated Bacillus strain B-2. Biocatal. Agric. Biotechnol. 5: 99-103. https://doi.org/10.1016/j.bcab.2015.12.010 -
Nguyen TH, Splechtna B, Steinbock M, Kneifel W, Lettner HP, Kulbe KD. 2006. Purification and characterization of two novel
$\beta$ -galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 54: 4989-4998. https://doi.org/10.1021/jf053126u -
Splechtna B, Nguyen TH, Zehetner R, Lettner HP, Lorenz W, Haltrich D. 2007. Process development for the production of prebiotic galacto-oligosaccharides from lactose using
$\beta$ -galactosidase from Lactobacillus sp. Biotechnol. J. 2: 480-485. https://doi.org/10.1002/biot.200600230 -
Sani R, Chakraborti S, Sobti R, Patnaik P, Banerjee U. 1999. Characterization and some reaction-engineering aspects of thermostable extracellular
$\beta$ -galactosidase from a new Bacillus species. Folia Microbiol. 44: 367. https://doi.org/10.1007/BF02903706 - Gänzle MG, Haase G, Jelen P. 2008. Lactose: crystallization, hydrolysis and value-added derivatives. Int. Dairy J. 18: 685-694. https://doi.org/10.1016/j.idairyj.2008.03.003
-
Nguyen T-T, Nguyen HA, Arreola SL, Mlynek G, Djinovic'-Carugo K, Mathiesen G. 2012. Homodimeric
$\beta$ -galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J. Agric. Food Chem. 60: 1713-1721. https://doi.org/10.1021/jf203909e -
Moller PL, Jorgensen F, Hansen OC, Madsen SM, Stougaard P. 2001. Intra-and extracellular
$\beta$ -galactosidases from Bifidobacterium bifidum and B. infantis: molecular cloning, heterologous expression, and comparative characterization. Appl. Environ. Microbiol. 67: 2276-2283. https://doi.org/10.1128/AEM.67.5.2276-2283.2001 -
Hsu CA, Lee SL, Chou CC. 2007. Enzymatic production of galactooligosaccharides by
$\beta$ -galactosidase from Bifidobacterium longum BCRC 15708. J. Agric. Food Chem. 55: 2225-2230. https://doi.org/10.1021/jf063126+ -
Chanalia P, Gandhi D, Attri P, Dhanda S. 2018. Purification and characterization of
$\beta$ -galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorg. Chem. 77: 176-189. https://doi.org/10.1016/j.bioorg.2018.01.006 - Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA. 2016. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr. Res. 79: 445. https://doi.org/10.1038/pr.2015.244
- Tissier H. 1900. Recherchers sur la Flora Intestinale Normale et Pathologique du Nourisson. University of Paris. Thesis:1-253
- Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C. 2015. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci. Rep. 5: 15782. https://doi.org/10.1038/srep15782
- Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10: 323. https://doi.org/10.1038/nrmicro2746
- Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7: 979.
- Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L. 2018. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell. Mol. Life Sci. 75: 103-118. https://doi.org/10.1007/s00018-017-2672-0
- James K, Motherway MOC, Bottacini F, Van Sinderen D. 2016. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose through overlapping, yet distinct pathways. Sci. Rep. 6: 38560. https://doi.org/10.1038/srep38560
- O'Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. 2013. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC 2003. Microb. Biotechnol. 6: 67-79. https://doi.org/10.1111/1751-7915.12011
-
Roy D, Berger JL, Reuter G. 1994. Characterization of dairyrelated Bifidobacterium spp. based on their
$\beta$ -galactosidase electrophoretic patterns. Int. J. Food Microbiol. 23: 55-70. https://doi.org/10.1016/0168-1605(94)90221-6 -
Smart JB, Pillidge CJ, Garman JH. 1993. Growth of lactic acid bacteria and bifidobacteria on lactose and lactoserelated mono-, di-and trisaccharides and correlation with distribution of
$\beta$ -galactosidase and phospho-$\beta$ -galactosidase. J. Dairy Res. 60: 557-568. https://doi.org/10.1017/S0022029900027904 -
Van Laere KM, Abee T, Schols HA, Beldman G, Voragen AG. 2000. Characterization of a Novel
$\beta$ -Galactosidase from Bifidobacterium adolescentis DSM 20083 Active towards Transgalactooligosaccharides. Appl. Environ. Microbiol. 66: 1379-1384. https://doi.org/10.1128/AEM.66.4.1379-1384.2000 -
Han YR, Youn SY, Ji GE, Park MS. 2014. Production of
$\alpha$ -and$\beta$ -galactosidases from Bifidobacterium longum subsp. longum RD47. J. Microbiol. Biotechnol. 24: 675-682. https://doi.org/10.4014/jmb.1402.02037 -
Oh SY, Youn SY, Park MS, Kim HG, Baek NI, Li Z. 2017. Synthesis of
$\beta$ -galactooligosaccharide using bifidobacterial$\beta$ -galactosidase purified from recombinant Escherichia coli. J. Microbiol. Biotechnol. 27: 1392-1400. https://doi.org/10.4014/jmb.1702.02058 - Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Marsili R, Ostapenko H, Simmons R, Green D. 1981. High performance liquid chromatographic determination of organic acids in dairy products. J. Food Sci. 46: 52-57. https://doi.org/10.1111/j.1365-2621.1981.tb14529.x
- Kim IH, Park MS, Ji GE. 2003. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte-like Caco-2 cells. J. Microbiol. Biotechnol. 13: 276-281.
- Ku S, You HJ, Ji GE. 2009. Enhancement of anti-tumorigenic polysaccharide production, adhesion, and branch formation of Bifidobacterium bifidum BGN4 by phytic acid. Food Sci. Biotechnol. 18: 749-754.
- Lee MJ, Zang Z, Choi EY, Shin HK, Ji GE. 2002. Cytoskeleton reorganization and cytokine production of macrophages by bifidobacterial cells and cell-free extracts. J. Microbiol. Biotechnol. 12: 398-405.
- Kim N, Ji GE. 2006. Modulatory activity of Bifidobacterium sp. BGN4 cell fractions on immune cells. J. Microbiol. Biotechnol. 16: 584-589.
- Lee S, Koo N, Oh S. 2006. Regulatory effect on specific ige response of Bifidobacterium Bifidum (bgn4 Strain) in murine model of peanut allergy. J. Allergy Clin. Immunol. 117(2).
- Kim N, Kunisawa J, Kweon MN, Eog Ji GE, Kiyono H. 2007. Oral feeding of Bifidobacterium bifidum ( BGN4) prevents CD4(+) CD45RB(high) T cell-mediated inflammatory bowel disease by inhibition of disordered T cell activation. Clin. Immunol. 123: 30-39. https://doi.org/10.1016/j.clim.2006.11.005
- Hong KS, Kang HW, Im JP, Ji GE, Kim SG, Jung HC. 2009. Effect of probiotics on symptoms in Korean adults with irritable bowel syndrome. Gut Liver. 3: 101-107. https://doi.org/10.5009/gnl.2009.3.2.101
- You HJ, Oh DK, Ji GE. 2004. Anticancerogenic effect of a novel chiroinositol-containing polysaccharide from Bifidobacterium bifidum BGN4. FEMS Microbiol. Lett. 240: 131-136. https://doi.org/10.1016/j.femsle.2004.09.020
- Park MJ, Park MS, Ji GE. 2018. Improvement of electroporationmediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level. J. Microbiol. Methods. 159: 112-119. https://doi.org/10.1016/j.mimet.2018.11.019
-
Youn SY, Park MS, Ji GE. 2012. Identification of the
$\beta$ -glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 22: 1714-1723. https://doi.org/10.4014/jmb.1208.08028 - Wang Y, Kim JY, Park MS, Ji GE. 2012. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high-level gene expression. J. Microbiol. 50: 638-643. https://doi.org/10.1007/s12275-012-1591-x
- McCracken A, Turner MS, Giffard P, Hafner LM, Timms P. 2000. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch. Microbiol. 173: 383-389. https://doi.org/10.1007/s002030000159
- Li J, Zhang Y. 2014. Relationship between promoter sequence and its strength in gene expression. Eur. Phys. J. E. Soft Matter 37(9): 44. https://doi.org/10.1140/epje/i2014-14086-1
- Jensen PR, Hammer K. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87. https://doi.org/10.1128/aem.64.1.82-87.1998
-
Helmann JD. 1995. Compilation and analysus of Bacillus Subtilis
${\sigma}$ A-dependent promoter sequences: evidence for extended contact between RNA polymerse and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360. https://doi.org/10.1093/nar/23.13.2351 - Estrem ST, Gaal T, Ross W, Gourse RL. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766. https://doi.org/10.1073/pnas.95.17.9761
- Kumar A, Bansal M. 2018. Modulation of Gene Expression by Gene Architecture and Promoter Structure. IntechOpen 76051: 37-53.
-
Hsu C, Yu R, Chou C. 2005. Production of
$\beta$ -galactosidase by Bifidobacteria as influenced by various culture conditions. Int. J. Food Microbiol. 104: 197-206. https://doi.org/10.1016/j.ijfoodmicro.2005.02.010 -
Hsu CA, Yu RC, Chou CC. 2006. Purification and characterization of a sodium-stimulated
$\beta$ -galactosidase from Bifidobacterium longum CCRC 15708. World J. Microbiol. Biotechnol. 22: 355-361. https://doi.org/10.1007/s11274-005-9041-0 - Bidart GN, Rodriguez-Diaz J, Perez-Martinez G, Yebra MJ. 2018. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 n-acetyllactosamine. Sci. Rep. 8: 7152. https://doi.org/10.1038/s41598-018-25660-w
-
Chan V, Dreolini LF, Flintoff KA, Lloyd SJ, Mattenley AA. 2002. The effects of glycerol, glucose, galactose, lactose and glucose with galactose on the induction of
$\beta$ -galactosidase in Escherichia coli. J. Exp. Microbiol. Immunol. 2: 130-137. -
Ilyes H, Fekete E, Karaffa L, Fekete E, Sandor E, Szentirmai A. 2004. CreA-mediated carbon catabolite repression of
$\beta$ -galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol. Lett. 235: 147-151. https://doi.org/10.1111/j.1574-6968.2004.tb09579.x -
Inchaurrondo V, Flores M, Voget C. 1998. Growth and
$\beta$ -galactosidase synthesis in aerobic chemostat cultures of Kluyveromyces lactis. J. Ind. Microbiol. Biotechnol. 20: 291-298. https://doi.org/10.1038/sj/jim/2900526 - Ullmann A. 1996. Catabolite repression: a story without end. Res. Microbiol. 147: 455-458. https://doi.org/10.1016/0923-2508(96)83999-4
- Saier Jr MH, Ramseier TM. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178: 3411-3417. https://doi.org/10.1128/jb.178.12.3411-3417.1996
- Gory L, Montel MC, Zagorec M. 2001. Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiol. Lett. 194: 127-133. https://doi.org/10.1016/S0378-1097(00)00515-2
- Ceroni F, Algar R, Stan GB, Ellis T. 2015. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods. 12: 415-418. https://doi.org/10.1038/nmeth.3339
- Silva F, Queiroz JA, Domingues FC. 2012. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol. Adv. 30: 691-708. https://doi.org/10.1016/j.biotechadv.2011.12.005
- Ceroni F, Boo A, Furini S, Gorochowski TE, Borkowski O, Ladak YN. 2018. Burden-driven feedback control of gene expression. Nat. Methods. 15: 387-393. https://doi.org/10.1038/nmeth.4635
- Carneiro S, Ferreira EC, Rocha I. 2013. Metabolic responses to recombinant bioprocesses in Escherichia coli. J. Biotechnol. 164: 396-408. https://doi.org/10.1016/j.jbiotec.2012.08.026
- Oliveira PH, Prazeres DM, Monteiro GA. 2009. Deletion formation mutations in plasmid expression vectors are unfavored by runaway amplification conditions and differentially selected under kanamycin stress. J. Biotechnol. 143: 231-238. https://doi.org/10.1016/j.jbiotec.2009.08.002
- Harju M, Kallioinen H, Tossavainen O. 2012. Lactose hydrolysis and other conversions in dairy products: Technological aspects. Int. Dairy J. 22: 104-109. https://doi.org/10.1016/j.idairyj.2011.09.011
- Ohlsson JA, Johansson M, Hansson H, Abrahamson A, Byberg L, Smedman A. 2017. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 73: 151-154. https://doi.org/10.1016/j.idairyj.2017.06.004
- Dekker PJ, Koenders D, Bruins MJ. 2019. Lactose-free dairy products: market developments, production, nutrition and health benefits. Nutrients 11(3). pii: 551. https://doi.org/10.3390/nu11030551
-
Becerra M, Prado SD, Cerdan E, Siso MG. 2001. Heterologous Kluyveromyces lactis
$\beta$ -galactosidase secretion by Saccharomyces cerevisiae super-secreting mutants. Biotechnol. Lett. 23: 33-40. https://doi.org/10.1023/a:1026795706520 -
Ding H, Zhou L, Zeng Q, Yu Y, Chen B. 2018. Heterologous expression of a thermostable
$\beta$ -1, 3-galactosidase and its potential in synthesis of galactooligosaccharides. Mar. Drugs. 16(11). pii: E415. - Park MS, Shin DW, Lee KH, Ji GE. 1999. Sequence analysis of plasmid pKJ50 from Bifidobacterium longum. Microbiology 145: 585-592. https://doi.org/10.1099/13500872-145-3-585
- Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ. 1999. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol. 46: 231-241. https://doi.org/10.1016/S0168-1605(98)00197-4
- Park M-S, Moon H-W, Ji GE. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
Cited by
- Antioxidant and Anti-Inflammatory Properties of Recombinant Bifidobacterium bifidum BGN4 Expressing Antioxidant Enzymes vol.9, pp.3, 2019, https://doi.org/10.3390/microorganisms9030595
- Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4 vol.20, pp.1, 2019, https://doi.org/10.1186/s12934-020-01505-y