DOI QR코드

DOI QR Code

Synthesis and Sinterability of Hydroxyapatite from Fishery by-products

  • 투고 : 2018.07.10
  • 심사 : 2018.09.28
  • 발행 : 2018.11.30

초록

Hydroxyapatites (HAps) were synthesized using the powdered waste of fishery products, i.e., fish scales and crab shells, as starting materials. HAp was synthesized by a wet-chemistry method followed by calcination at 600 and $800^{\circ}C$. Calcined crabshell powder revealed a single HAp phase and fine powder, while calcined fish-scale powder showed a ${\beta}-TCP$ secondary phase, even at the higher calcination temperature. Dense HAp pellets were obtained from the crab-shell powder by spark plasma sintering at $1000^{\circ}C$ for 10 min under applied pressures of 40 and 80 MPa in a vacuum state, giving sample densities of 2.93 and $3.06g/cm^3$, respectively. The estimated grain size of HAp was $448{\pm}96$ and $283{\pm}59nm$ for applied pressures of 40 and 80 MPa, respectively. In contrast, the HAp obtained using the pressureless sintering technique showed excessive grain growth without further densification.

키워드

참고문헌

  1. Y. Wibisono, Biomaterial dan Bioproduk; p. 24, UB Press, Malang, 2017.
  2. M. Markovic, B. Fowler, and M. Tung, "Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material," J. Res. Natl. Inst. Stand. Technol., 109 [6] 553-68 (2004). https://doi.org/10.6028/jres.109.042
  3. S. Wu, J. Wang, L. Zou, L. Jin, Z. Wang, and Y. Li, "A Three-Dimensional Hydroxyapatite/Polyacrylonitrile Wcomposite scaffold designed for bone tissue engineering," RSC Adv., 8 [4] 1730-36 (2018). https://doi.org/10.1039/C7RA12449J
  4. J. Sun and L. Wu, "Polyether Sulfone/Hydroxyapatite Mixed Matrix Membranes for Protein Purification," Appl. Surf. Sci., 308 155-60 (2014). https://doi.org/10.1016/j.apsusc.2014.04.123
  5. Y. Wibisono, W. A. Nugroho, and T.-W. Chung, "Dry Degumming of Corn-Oil for Biodiesel Using a Tubular Ceramic Membrane," Procedia Chem., 9 210-19 (2014). https://doi.org/10.1016/j.proche.2014.05.025
  6. H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang, and M. T. Lui, "Hydroxyapatite Synthesized by a Simplified Hydrothermal Method," Ceram. Int., 23 [1] 19-25 (1997). https://doi.org/10.1016/0272-8842(95)00135-2
  7. M. C. Barbosa, N. R. Messmer, T. R. Brazil, F. R. Marciano, and A. O. Lobo, "The Effect of Ultrasonic Irradiation on the Crystallinity of Nano-Hydroxyapatite Produced via the Wet Chemical Method," Mater. Sci. Eng. C, 33 [5] 2620-25 (2013). https://doi.org/10.1016/j.msec.2013.02.027
  8. S. Santhosh and S. Balasivanandha Prabu, "Thermal Stability of Nano Hydroxyapatite Synthesized from Sea Shells through Wet Chemical Synthesis," Mater. Lett., 97 121-24 (2013). https://doi.org/10.1016/j.matlet.2013.01.081
  9. M. R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani, and C. C. Sorrell, "The Wet Precipitation Process of Hydroxyapatite," Mater. Lett., 57 [24-25] 4064-69 (2003). https://doi.org/10.1016/S0167-577X(03)00266-0
  10. M. Sivakumar, T. S. Sampath Kumar, K. L. Shantha, and K. Panduranga Rao, "Development of Hydroxyapatite Derived from Indian Coral," Biomaterials, 17 [17] 1709-14 (1996). https://doi.org/10.1016/0142-9612(96)87651-4
  11. D. Ulfyana, F. Anugroho, S. H. Sumarlan, W. A. Nugroho, and Y. Wibisono, "Bioceramics Synthesis of Hydroxyapatite from Red Snapper Fish Scales Biowaste Using Wet Chemical Precipitation Route," IOP Conf. Ser. Earth Environ. Sci., 131 012038 (2018).
  12. Y. Xu, D. Wang, L. Yang, and H. Tang, "Hydrothermal Conversion of Coral into Hydroxyapatite," Mater. Charact., 47 [2] 83-7 (2001). https://doi.org/10.1016/S1044-5803(01)00154-1
  13. S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, and S. Chanthai, "Nanocrystalline Hydroxyapatite from Fish Scale Waste: Preparation, Characterization and Application for Selenium Adsorption in Aqueous Solution," Chem. Eng. J., 215-216 522-32 (2013). https://doi.org/10.1016/j.cej.2012.11.054
  14. A. Shavandi, A. E. D. A. Bekhit, A. Ali, and Z. Sun, "Synthesis of Nano-Hydroxyapatite (nHA) from Waste Mussel Shells Using a Rapid Microwave Method," Mater. Chem. Phys., 149 607-16 (2015).
  15. C. Piccirillo, R. C. Pullar, D. M. Tobaldi, P. M. L. Castro, and M. M. E. Pintado, "Hydroxyapatite and Chloroapatite Derived from Sardine by-products," Ceram. Int., 40 [8] 13231-40 (2014). https://doi.org/10.1016/j.ceramint.2014.05.030
  16. S. Mondal, S. Mahata, S. Kundu, and B. Mondal, "Processing of Natural Resourced Hydroxyapatite Ceramics from Fish Scale," Adv. Appl. Ceram., 109 [4] 234 (2010). https://doi.org/10.1179/174367613X13789812714425
  17. A. Prasad, B. Devendar, M. R. Sankar, and P. S. Robi, "Micro-Scratch Based Tribological Characterization of Hydroxyapatite (HAp) Fabricated through Fish Scales," Mater. Today Proc., 2 [4-5] 1216-24 (2015). https://doi.org/10.1016/j.matpr.2015.07.034
  18. Y. C. Huang, P. C. Hsiao, and H. J. Chai, "Hydroxyapatite Extracted from Fish Scale: Effects on MG63 Osteoblastlike Cells," Ceram. Int., 37 [6] 1825-31 (2011). https://doi.org/10.1016/j.ceramint.2011.01.018
  19. M. Boutinguiza, J. Pou, R. Comesana, F. Lusquinos, A. De Carlos, and B. Leon, "Biological Hydroxyapatite Obtained from Fish Bones," Mater. Sci. Eng. C, 32 [3] 478-86 (2012). https://doi.org/10.1016/j.msec.2011.11.021
  20. A. Noviyanto and D.-H. Yoon, "Metal Oxide Additives for the Sintering of Silicon Carbide: Reactivity and Densification," Curr. Appl. Phys., 13 [1] 287-92 (2013). https://doi.org/10.1016/j.cap.2012.07.027
  21. A. Noviyanto, Y. H. Han, and D. H. Yoon, "Characteristics of $SiC_f/SiC$ Hybrid Composites Fabricated by Hot Pressing and Spark Plasma Sintering," Adv. Appl. Ceram., 110 [7] 375-81 (2011). https://doi.org/10.1179/1743676111Y.0000000025
  22. Y. W. Gu, N. H. Loh, K. A. Khor, S. B. Tor, and P. Cheang, "Spark Plasma Sintering of Hydroxyapatite Powders," Biomaterials, 23 [1] 37-43 (2002). https://doi.org/10.1016/S0142-9612(01)00076-X
  23. Y. Watanabe, T. Ikoma, A. Monkawa, Y. Suetsugu, H. Yamada, J. Tanaka, and Y. Moriyoshi, "Fabrication of Transparent Hydroxyapatite Sintered Body with High Crystal Orientation by Pulse Electric Current Sintering," J. Am. Ceram. Soc., 88 [1] 243-45 (2005). https://doi.org/10.1111/j.1551-2916.2004.00041.x
  24. M. Eriksson, Y. Liu, J. Hu, L. Gao, M. Nygren, and Z. Shen, "Transparent Hydroxyapatite Ceramics with Nanograin Structure Prepared by High Pressure Spark Plasma Sintering at the Minimized Sintering Temperature," J. Eur. Ceram. Soc., 31 [9] 1533-40 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.03.021
  25. B. N. Kim, E. Prajatelistia, Y. H. Han, H. W. Son, Y. Sakka, and S. Kim, "Transparent Hydroxyapatite Ceramics Consolidated by Spark Plasma Sintering," Scr. Mater., 69 [5] 366-69 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.011
  26. A. A. Gandhi, R. D. Gunning, K. M. Ryan, and S. A. M. Tofail, "The Role of Texturing and Densification on Optical Transmittance of Hydroxyapatite Ceramics," J. Am. Ceram. Soc., 93 [11] 3773-77 (2010). https://doi.org/10.1111/j.1551-2916.2010.03925.x
  27. L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-28 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  28. R. Furushima, K. Katou, S. Nakao, Z. M. Sun, K. Shimojima, H. Hosokawa, and A. Matsumoto, "Relationship between Hardness and Fracture Toughness in WC-FeAl Composites Fabricated by Pulse Current Sintering Technique," Int. J. Refract. Met. Hard Mater., 42 42-6 (2014). https://doi.org/10.1016/j.ijrmhm.2013.10.008
  29. M. E. Launey and R. O. Ritchie, "On the Fracture Toughness of Advanced Materials," Adv. Mater., 21 [20] 2103-10 (2009). https://doi.org/10.1002/adma.200803322

피인용 문헌

  1. Unravelling the Potency of Activated Carbon Powder Derived from Cultivated Marine Microalgae as a Promising Filler in Mixed Matrix Membranes vol.1, pp.2, 2018, https://doi.org/10.3390/agriengineering1020014
  2. Hybridization of nitrogen compounds and hydroxyapatite: a slowly released fertiliser for water sustainability vol.475, pp.None, 2018, https://doi.org/10.1088/1755-1315/475/1/012005
  3. Biowaste‐derived hydroxyapatite reinforced with polyvinyl pyrrolidone/aloevera composite for biomedical applications vol.18, pp.1, 2021, https://doi.org/10.1111/ijac.13630
  4. Preheat-Treatment and Bleaching Agents Affect Characteristics of Bio-calcium from Asian Sea Bass (Lates calcarifer) Backbone vol.12, pp.6, 2021, https://doi.org/10.1007/s12649-020-01224-w
  5. Marine-Derived Biowaste Conversion into Bioceramic Membrane Materials: Contrasting of Hydroxyapatite Synthesis Methods vol.26, pp.21, 2018, https://doi.org/10.3390/molecules26216344