Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.03

Synthesis and Sinterability of Hydroxyapatite from Fishery by-products  

Wibisono, Yusuf (Department of Bioprocess Engineering, Brawijaya University)
Dwijaksara, Ni Luh Bella (Graduate School of Biomedical Engineering, Airlangga University)
Widayatno, Wahyu Bambang (Research Center for Physics, Indonesian Institute of Sciences, PUSPIPTEK Tangerang Selatan)
Wismogroho, Agus Sukarto (Research Center for Physics, Indonesian Institute of Sciences, PUSPIPTEK Tangerang Selatan)
Amal, Muhamad Ikhlasul (Research Center for Metallurgy and Materials, Indonesian Institute of Sciences, PUSPIPTEK Tangerang Selatan)
Rochman, Nurul Taufiqu (Research Center for Physics, Indonesian Institute of Sciences, PUSPIPTEK Tangerang Selatan)
Nishimura, Toshiyuki (National Institute for Materials Science)
Noviyanto, Alfian (Department of Mechanical Engineering, Mercu Buana University)
Publication Information
Abstract
Hydroxyapatites (HAps) were synthesized using the powdered waste of fishery products, i.e., fish scales and crab shells, as starting materials. HAp was synthesized by a wet-chemistry method followed by calcination at 600 and $800^{\circ}C$. Calcined crabshell powder revealed a single HAp phase and fine powder, while calcined fish-scale powder showed a ${\beta}-TCP$ secondary phase, even at the higher calcination temperature. Dense HAp pellets were obtained from the crab-shell powder by spark plasma sintering at $1000^{\circ}C$ for 10 min under applied pressures of 40 and 80 MPa in a vacuum state, giving sample densities of 2.93 and $3.06g/cm^3$, respectively. The estimated grain size of HAp was $448{\pm}96$ and $283{\pm}59nm$ for applied pressures of 40 and 80 MPa, respectively. In contrast, the HAp obtained using the pressureless sintering technique showed excessive grain growth without further densification.
Keywords
Hydroxyapatite; Fish scales; Crab shells; Calcination; Sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wibisono, Biomaterial dan Bioproduk; p. 24, UB Press, Malang, 2017.
2 M. Markovic, B. Fowler, and M. Tung, "Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material," J. Res. Natl. Inst. Stand. Technol., 109 [6] 553-68 (2004).   DOI
3 S. Wu, J. Wang, L. Zou, L. Jin, Z. Wang, and Y. Li, "A Three-Dimensional Hydroxyapatite/Polyacrylonitrile Wcomposite scaffold designed for bone tissue engineering," RSC Adv., 8 [4] 1730-36 (2018).   DOI
4 J. Sun and L. Wu, "Polyether Sulfone/Hydroxyapatite Mixed Matrix Membranes for Protein Purification," Appl. Surf. Sci., 308 155-60 (2014).   DOI
5 Y. Wibisono, W. A. Nugroho, and T.-W. Chung, "Dry Degumming of Corn-Oil for Biodiesel Using a Tubular Ceramic Membrane," Procedia Chem., 9 210-19 (2014).   DOI
6 H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang, and M. T. Lui, "Hydroxyapatite Synthesized by a Simplified Hydrothermal Method," Ceram. Int., 23 [1] 19-25 (1997).   DOI
7 M. C. Barbosa, N. R. Messmer, T. R. Brazil, F. R. Marciano, and A. O. Lobo, "The Effect of Ultrasonic Irradiation on the Crystallinity of Nano-Hydroxyapatite Produced via the Wet Chemical Method," Mater. Sci. Eng. C, 33 [5] 2620-25 (2013).   DOI
8 S. Santhosh and S. Balasivanandha Prabu, "Thermal Stability of Nano Hydroxyapatite Synthesized from Sea Shells through Wet Chemical Synthesis," Mater. Lett., 97 121-24 (2013).   DOI
9 M. R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani, and C. C. Sorrell, "The Wet Precipitation Process of Hydroxyapatite," Mater. Lett., 57 [24-25] 4064-69 (2003).   DOI
10 M. Sivakumar, T. S. Sampath Kumar, K. L. Shantha, and K. Panduranga Rao, "Development of Hydroxyapatite Derived from Indian Coral," Biomaterials, 17 [17] 1709-14 (1996).   DOI
11 D. Ulfyana, F. Anugroho, S. H. Sumarlan, W. A. Nugroho, and Y. Wibisono, "Bioceramics Synthesis of Hydroxyapatite from Red Snapper Fish Scales Biowaste Using Wet Chemical Precipitation Route," IOP Conf. Ser. Earth Environ. Sci., 131 012038 (2018).
12 Y. Xu, D. Wang, L. Yang, and H. Tang, "Hydrothermal Conversion of Coral into Hydroxyapatite," Mater. Charact., 47 [2] 83-7 (2001).   DOI
13 S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, and S. Chanthai, "Nanocrystalline Hydroxyapatite from Fish Scale Waste: Preparation, Characterization and Application for Selenium Adsorption in Aqueous Solution," Chem. Eng. J., 215-216 522-32 (2013).   DOI
14 A. Shavandi, A. E. D. A. Bekhit, A. Ali, and Z. Sun, "Synthesis of Nano-Hydroxyapatite (nHA) from Waste Mussel Shells Using a Rapid Microwave Method," Mater. Chem. Phys., 149 607-16 (2015).
15 C. Piccirillo, R. C. Pullar, D. M. Tobaldi, P. M. L. Castro, and M. M. E. Pintado, "Hydroxyapatite and Chloroapatite Derived from Sardine by-products," Ceram. Int., 40 [8] 13231-40 (2014).   DOI
16 S. Mondal, S. Mahata, S. Kundu, and B. Mondal, "Processing of Natural Resourced Hydroxyapatite Ceramics from Fish Scale," Adv. Appl. Ceram., 109 [4] 234 (2010).   DOI
17 A. Noviyanto and D.-H. Yoon, "Metal Oxide Additives for the Sintering of Silicon Carbide: Reactivity and Densification," Curr. Appl. Phys., 13 [1] 287-92 (2013).   DOI
18 A. Prasad, B. Devendar, M. R. Sankar, and P. S. Robi, "Micro-Scratch Based Tribological Characterization of Hydroxyapatite (HAp) Fabricated through Fish Scales," Mater. Today Proc., 2 [4-5] 1216-24 (2015).   DOI
19 Y. C. Huang, P. C. Hsiao, and H. J. Chai, "Hydroxyapatite Extracted from Fish Scale: Effects on MG63 Osteoblastlike Cells," Ceram. Int., 37 [6] 1825-31 (2011).   DOI
20 M. Boutinguiza, J. Pou, R. Comesana, F. Lusquinos, A. De Carlos, and B. Leon, "Biological Hydroxyapatite Obtained from Fish Bones," Mater. Sci. Eng. C, 32 [3] 478-86 (2012).   DOI
21 A. Noviyanto, Y. H. Han, and D. H. Yoon, "Characteristics of $SiC_f/SiC$ Hybrid Composites Fabricated by Hot Pressing and Spark Plasma Sintering," Adv. Appl. Ceram., 110 [7] 375-81 (2011).   DOI
22 Y. W. Gu, N. H. Loh, K. A. Khor, S. B. Tor, and P. Cheang, "Spark Plasma Sintering of Hydroxyapatite Powders," Biomaterials, 23 [1] 37-43 (2002).   DOI
23 Y. Watanabe, T. Ikoma, A. Monkawa, Y. Suetsugu, H. Yamada, J. Tanaka, and Y. Moriyoshi, "Fabrication of Transparent Hydroxyapatite Sintered Body with High Crystal Orientation by Pulse Electric Current Sintering," J. Am. Ceram. Soc., 88 [1] 243-45 (2005).   DOI
24 M. Eriksson, Y. Liu, J. Hu, L. Gao, M. Nygren, and Z. Shen, "Transparent Hydroxyapatite Ceramics with Nanograin Structure Prepared by High Pressure Spark Plasma Sintering at the Minimized Sintering Temperature," J. Eur. Ceram. Soc., 31 [9] 1533-40 (2011).   DOI
25 R. Furushima, K. Katou, S. Nakao, Z. M. Sun, K. Shimojima, H. Hosokawa, and A. Matsumoto, "Relationship between Hardness and Fracture Toughness in WC-FeAl Composites Fabricated by Pulse Current Sintering Technique," Int. J. Refract. Met. Hard Mater., 42 42-6 (2014).   DOI
26 B. N. Kim, E. Prajatelistia, Y. H. Han, H. W. Son, Y. Sakka, and S. Kim, "Transparent Hydroxyapatite Ceramics Consolidated by Spark Plasma Sintering," Scr. Mater., 69 [5] 366-69 (2013).   DOI
27 A. A. Gandhi, R. D. Gunning, K. M. Ryan, and S. A. M. Tofail, "The Role of Texturing and Densification on Optical Transmittance of Hydroxyapatite Ceramics," J. Am. Ceram. Soc., 93 [11] 3773-77 (2010).   DOI
28 L. L. Hench, "Bioceramics," J. Am. Ceram. Soc., 81 [7] 1705-28 (1998).   DOI
29 M. E. Launey and R. O. Ritchie, "On the Fracture Toughness of Advanced Materials," Adv. Mater., 21 [20] 2103-10 (2009).   DOI