DOI QR코드

DOI QR Code

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Song, Baowei (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Wang, Peng (School of Marine Science and Technology, Northwestern Polytechnical University) ;
  • Sun, Chunya (School of Marine Science and Technology, Northwestern Polytechnical University)
  • 투고 : 2017.05.09
  • 심사 : 2017.12.19
  • 발행 : 2018.11.30

초록

Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

키워드

참고문헌

  1. Alvarez, A., Bertram, V., Gualdesi, L., 2009. Hull hydrodynamic optimization of autonomous underwater vehicles operating at snorkeling depth. Ocean Eng. 36 (1), 105-112. https://doi.org/10.1016/j.oceaneng.2008.08.006
  2. Bachmayer, R., Leonard, N.E., Graver, J., Fiorelli, E., Bhatta, P., Paley, D., 2004. Underwater gliders: recent developments and future applications. In: Underwater Technology, 2004. UT'04. 2004 International Symposium on IEEE, pp. 195-200.
  3. Baowei, S., Xinjing, W., Peng, W., 2017. Predictions of AUV's hydrodynamic parameters based on variable-fidelity modeling. J. Mech. Eng. 53 (18), 176-182. https://doi.org/10.3901/jme.2017.17.176
  4. S. S. D. Bingham, Optimization Test Problems, http://www.sfu.ca/-ssurjano/optimization.html.
  5. Dong, H., Song, B., Dong, Z., Wang, P., 2016. Multi-start space reduction (MSSR) surrogate-based global optimization method. Struct. Multidiscip. Optim. 54 (4), 1-20. https://doi.org/10.1007/s00158-016-1491-5
  6. Dong, H., Song, B., Wang, P., Dong, Z., 2017a. Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems. Struct. Multidiscip. Optim. 1-25.
  7. Dong, H., Song, B., Wang, P., 2017b. Kriging-based optimization design for a new style shell with black box constraints. J. Algorithm Comput. Technol. 11 (3), 234-245. https://doi.org/10.1177/1748301817709601
  8. Eriksen, C.C., Osse, T.J., Light, R.D., Wen, T., 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng. 26 (4), 424-436. https://doi.org/10.1109/48.972073
  9. Forrester, A.I.J., Keane, A.J., 2009. Recent advances in surrogate-based optimization. Prog. Aero. Sci. 45 (1), 50-79. https://doi.org/10.1016/j.paerosci.2008.11.001
  10. Gao, T., Wang, Y., Pang, Y., Cao, J., 2016. Hull shape optimization for autonomous underwater vehicles using cfd. Eng. App. Computat. Fluid Mech. 10 (1), 599-607.
  11. Garg, N., Kenway, G.K.W., Lyu, Z., Martins, J.R.R.A., Young, Y.L., 2015. High-fidelity hydrodynamic shape optimization of a 3-d hydrofoil. J. Ship Res. 59 (4), 209-226. https://doi.org/10.5957/JOSR.59.4.150046
  12. Ginsbourger, D., Le Riche, R., Carraro, L., 2010. Kriging is well-suited to parallelize optimization. Computat. Intell. Expen. Opti. Probl. 2, 131-162.
  13. Graver, J., 2005. Grady, Underwater gliders: dynamics, control and design. J. Fluid Eng. 127 (3), 523-528. https://doi.org/10.1115/1.1899169
  14. Hildebrand, J.A., D'Spain, G.L., Roch, M.A., Porter, M.B., 2009. Glider-based Passive Acoustic Monitoring Techniques in the Southern California Region. Tech. rep.. Scripps Institution of Oceanography la Jolla ca.
  15. Jin, R., Chen, W., Sudjianto, A., 2002. On sequential sampling for global metamodeling in engineering design. Proc.DETC 2, 539-548.
  16. Jones, D.R., 2001. A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21 (4), 345-383. https://doi.org/10.1023/A:1012771025575
  17. Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive black-box functions. J. Global Optim. 13 (4), 455-492. https://doi.org/10.1023/A:1008306431147
  18. Joung, T.H., Sammut, K., He, F., Lee, S.K., 2012. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. Int. J. Naval Architect. Ocean Eng. 4 (1), 44-56. https://doi.org/10.2478/IJNAOE-2013-0077
  19. Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the witwatersrand. OR 4 (1), 18-18.
  20. Kulfan, B.M., 2008. Universal parametric geometry representation method. J. Aircraft 45 (1), 142-158. https://doi.org/10.2514/1.29958
  21. Leifsson, L., Koziel, S., Ogurtsov, S., 2013. Hydrodynamic shape optimization of axisymmetric bodies using multi-fidelity modeling. Simul. Model. Methodol. Technol. App. 209-223.
  22. Liu, J., Han, Z., Song, W., 2012. Comparison of infill sampling criteria in krigingbased aerodynamic optimization. In: 28th Congress of the International Council of the Aeronautical Sciences, pp. 23-28.
  23. Liu, J., Song,W., Han, Z., Zhang, Y., 2017. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Struct. Multidiscip. Optim. 55 (3), 925-943. https://doi.org/10.1007/s00158-016-1546-7
  24. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 1989. Design and analysis of computer experiments. Stat. Sci. 4 (4), 409-423. https://doi.org/10.1214/ss/1177012413
  25. Sbester, A., Leary, S.J., Keane, A.J., 2004. A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscip. Optim. 27 (5), 371-383. https://doi.org/10.1007/s00158-004-0397-9
  26. Sederberg, T.W., Parry, S.R., 1986. Free-form deformation of solid geometric models. Comput. Graph. 20 (4), 151-160. https://doi.org/10.1145/15886.15903
  27. Sherman, J., Davis, R., Owens, W.B., Valdes, J., 2001. The autonomous underwater glider 'spray'. IEEE J. Ocean. Eng. 26 (4), 437-446. https://doi.org/10.1109/48.972076
  28. Stommel, H., 1989. The slocum mission. Oceanography 2 (1), 22-25. https://doi.org/10.5670/oceanog.1989.26
  29. Sun, C., Song, B., Wang, P., 2015. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body. Inter. J. Naval Architect. Ocean Eng. 7 (6), 995-1006. https://doi.org/10.1515/ijnaoe-2015-0069
  30. Sun, C., Song, B., Wang, P., Wang, X., 2017. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target. Int. J. Naval Architect. Ocean Eng. 9 (6), 693-704. https://doi.org/10.1016/j.ijnaoe.2016.12.003
  31. Viana, F.A., Haftka, R.T., 2010. Surrogate-based optimization with parallel simulations using the probability of improvement. In: 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 13-15. Fort Worth USA.
  32. Volpi, S., Diez, M., Stern, F., 2017. Towards the high-fidelity multidisciplinary design optimization of a 3d composite material hydrofoil. In: Proceedings of the VII International Congress on Computational Methods in Marine Engineering.
  33. Webb, D.C., Simonetti, P.J., Jones, C.P., 2001. Slocum: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26 (4), 447-452. https://doi.org/10.1109/48.972077
  34. Young, Y.L., Motley, M.R., Barber, R., Chae, E.J., Garg, N., 2016. Adaptive composite marine propulsors and turbines: progress and challenges. Appl. Mech. Rev. 68 (6), 060803-060834. https://doi.org/10.1115/1.4034659
  35. Zarruk, G.A., Brandner, P.A., Pearce, B.W., Phillips, A.W., 2014. Experimental study of the steady fluid-structure interaction of flexible hydrofoils. J. Fluid Struct. 51, 326-343. https://doi.org/10.1016/j.jfluidstructs.2014.09.009
  36. Zhang, D., Song, B.,Wang, P., Chen, X., 2017. Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation. Struct. Multidiscip. Optim. 55 (4), 1483-1502. https://doi.org/10.1007/s00158-016-1575-2

피인용 문헌

  1. Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology vol.11, pp.4, 2018, https://doi.org/10.3390/en11040694
  2. Design and Optimization of a Multi-Element Hydrofoil for a Horizontal-Axis Hydrokinetic Turbine vol.12, pp.24, 2018, https://doi.org/10.3390/en12244679
  3. Shape optimisation of blended-wing-body underwater gliders based on free-form deformation vol.15, pp.3, 2018, https://doi.org/10.1080/17445302.2019.1611989
  4. Research on the hull form optimization using the surrogate models vol.15, pp.1, 2018, https://doi.org/10.1080/19942060.2021.1915875
  5. Performance characteristics of a Novel point Absorber-type WEC based on counter-rotating self-adaptable movement mechanism vol.43, pp.7, 2021, https://doi.org/10.1080/15567036.2019.1632979
  6. Shape Optimization for A Conventional Underwater Glider to Decrease Average Periodic Resistance vol.35, pp.5, 2021, https://doi.org/10.1007/s13344-021-0064-6