• Title/Summary/Keyword: 기계적 자극

Search Result 152, Processing Time 0.03 seconds

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF

Effects of mechanical stress and interleukin-$1{\beta}$ on collagenase and TIMP-1 expression in human periodontal ligament fibroblasts (기계적 자극과 interleukin-$1{\beta}$가 치주인대 섬유아세포의 collagenase와 TIMP-1의 발현에 미치는 영향)

  • Kim, Myung-Lip;Bae, Chang
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.165-174
    • /
    • 1998
  • The turnover of collagen is controlled by the balance between collagen synthesis and degradation. The production of collagenase (matrix metalloproteinase-1) and its inhibitor, tissue inhibitor of matrix metallopmteinase-1 (TIMP-1) are one of the substances which regulate this balance. The periodontal ligament fibroblast plays an important role in collagen metabolism during orthodontic treatment and is believed to be an origin of the osteoblast in the alveolar bone. The collagenase secreted by the periodontal ligament fibroblast and the osteoblast initiates the bone resorption by removing the osteoid layer in the alveloar bone. The interleukin-$1{\beta}$ is secreted by the macrophage during orthodontic treatment. The present study was undertaken to assess the effect of mechanical stress and interleukin-$1{\beta}$ on the expression of collagenase and TIMP-1 in the periodontal ligament fibroblasts using reverse transcription polymerase chain reaction and immunohistochemical staining. The periodontal ligament fibroblasts were stitched by placing the $Petriperm dish^{\circledR}$ dish on the top of spheroidal convex watch glass ($5\%$ surface increase) and tented with interleukin-$1{\beta}$ (1.0 ng/ml), or treated with both of them. Treatment with mechanical stress and/or interleukin-$1{\beta}$ resulted in increased collagenase mRNA expression. The mechanical stress treated group (1.61, 1.62, 1.37 fold increase), the interleukin-$1{\beta}$, tented group (1.68, 1.60, 3.78 fold increase), the mechanical stress and interleukin-$1{\beta}$ treated group (1.89, 1.72, 5.48 fold increase) induced increases in collagenase mRNA compared with the control group after 2, 4, 8 hours respectively. But TIMP-1 mRNA expressions at experimental groups were decreased after 2, 4 hours and increased after 8 hours. The mechanical stress treated group (0.16, 0.49 fold decrease and 3.77 fold increase), the interleukin-$1{\beta}$ treated group (0.15,0.44 fold decrease and 4.46 fold increase), the mechanical stress and interleukin-$1{\beta}$ tented group (0.15, 0.69 fold decrease and 4.81 fold increase) induced changes in TIMP-1 mRNA compared with the control group after 2, 4, 8 hours, respectively. Immunohistochemical stain showed that increased collagenase and TIMP-1 staining of the mechanical stress tented group, the interleukin-$1{\beta}$ treated group, and the mechanical stress and interleukin-$1{\beta}$ treated group compared with that of the control group after 8 hours. These findings suggest that mechanical stress and interleukin-$1{\beta}$ regulate expression of collagenase and TIMP-1.

  • PDF

The Effects of Mechanical Stimulation using Graston on Changing Trigger Point Pressure Pain Threshold and Muscle Tone of the Same Spinal Segment in Neck Disk Patient (목 디스크 환자에게 그라스톤을 이용한 기계적 자극 시 동일 척수 분절의 통증 유발점 압통 역치 및 근 긴장도에 미치는 영향)

  • Kim, Do-Hyung;Lee, Byoung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.198-205
    • /
    • 2019
  • The purpose of this study was to identify whether cutaneous sensory (CS) changes induced by mechanical intervention(MI) increases the trigger point threshold and muscle tone of the same spinal segment to neck disc patients. Thirty persons with Neck disc patients were recruited in this experiment. The subjects consisted of 10 men and 20 women. The mechanical stimulus group induced CS changes for 5 minutes using the Graston instrument and the control group received no action. The CS changes were estimated by using the Von Frey Filament, PPT changes were measured by using the pressure threshold meter and msucle tone changes were measured by using Myotone pro. CS threshold increased significantly when MI was applied (p<0.05). On the same spinal segment, increases in the right infraspinatus PPT and muscle tone was observed (p<0.05) and decreases in the right trapezius PPT was observed(p<0.05). However, the PPT and muscle tone changes in other muscles were not significantly different. Furthermore, the control group CS, PPT and muscle tone were not significantly different. As a result, CS changes induced by MI make to change PPT and muscle tone on the same spinal segment. Therefore, application of MI to the same spinal segment may be of clinical significance as a new rehabilitation method for increasing pain threshold, muscle tone and pain control in neck disc patients.

Development of Bioreactor for Regenerative Medicine and Effect of Mechanical Stimuli on Mesenchymal Stem Cells in Polyurethane Scaffolds (바이오리액터 개발과 기계적 자극에 의한 중간엽 줄기세포의 영향에 관한 연구)

  • Joo, Min-Jin;Chun, Heoung-Jae;Jung, Hyung-Jin;Lee, Chang-Gun;Heo, Dong-Nyoung;Kwon, Il-Keun;Moon, Seong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.675-681
    • /
    • 2010
  • It is well known that mesenchymal stem cell(MSCs) can be differentiated into fibroblasts, chondrocytes, and osteoblasts and that they develop into fibrous tissue, cartilage, or bone, as a result of mechanical stimulation. In this study, we developed a bioreactor system, which is composed of a reactor vessel that provides the required cell culture environment, an environment controlling chamber to control the media, a gas mixer, and a reactor motion control subsystem to apply mechanical stimuli to the cells. For the MSC culture, We used a poly-urethane (PU) scaffold, with a collagen coating to ensure improved cohesion ratio. Then, we transferred the cultivated MSCs in the PU scaffold, cultured the cells in the bioreactor system, and confirmed the proliferation, differentiation, and ossification processes, resulting from mechanical stimuli.

Changes in Shoot and Root Growth of Tomato Seedlings Stimulated by Brushing (브러싱 자극 토마토 공정묘의 지상부와 지하부 생육 변화)

  • Hyeon Woo Jeong;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.205-209
    • /
    • 2023
  • Mechanical stimulation induce the morphological changes in plants. In this study, we investigated the growth changes of tomato seedlings applicated to mechanical stimulation. The brushing treatment was used for mechanical stimulation. The brushing treatment interval was 2 hr using transfer device attached acrylic film from 10 days after sowing. Growth parameter of tomato seedlings were measured 3-day intervals to investigate the growth changes during brushing treatment. The plant height and leaf area were decreased in brushing treatment than the control, and the fresh and dry weights of shoot didn't have significant difference in the control and brushing treatment. The total root length and root surface area were increased in brushing treatment compared than the control, and root volume has no significant difference in the control and brushing treatment. In conclusion, these results suggest that the application of brushing treatment on tomato seedling make shorten plant height and well-development root morphological characteristics.

Recent Research Trend in Soft Tactile Sensor for Electronic Skin (전자피부(E-Skin)용 유연 촉각센서 연구동향)

  • Jee, Eunsong;Kim, Joo Sung;Kim, Do Hwan
    • Prospectives of Industrial Chemistry
    • /
    • v.21 no.1
    • /
    • pp.3-18
    • /
    • 2018
  • 전자피부(Electronic skin)는 외부 환경과의 상호작용하는 인간 피부의 기능을 대체하여 외부 자극 신호를 전기적 신호로 변환하는 센서들로 이루어진 인공피부로써, 최근 인간과 전자기기 간의 인터페이스에 대한 관심이 급증하면서 이에 대한 많은 연구들이 진행되고 있다. 그중에서도 피부의 주된 기능인 외부 물리적 자극을 인지하는 촉각을 모방하는 촉각센서는 많은 발전을 거쳐 왔으며, 한계를 극복하고자 다양한 연구들이 진행되고 있다. 촉각센서는 압력, 인장, 굽힘과 같은 물리적 자극에 반응하며, 물리적 자극 신호를 아날로그 및 디지털 신호로 변환하여 인지하는 연구들이 폭넓게 개발되고 있다. 또한, 소자의 구조에 따라 물리적 자극을 전달하는 다양한 변환 방식들이 있으며, 최근에는 각 신호 변환 방식의 민감도, 반응속도, 자극 인지 범위 등의 한계점을 극복하고, 소재의 기계적 물성을 향상시키기 위해 소재의 변형을 주거나 생체의 기관 구조 및 외부 자극 인지 원리 등을 모사한 연구들이 많은 관심을 받고 있다. 본 기고에서는 이러한 촉각센서의 물리적 자극 신호 변환 방식과 소재 변형 및 생체 모사를 통한 다양한 연구들을 소개하고자 하며, 이를 통하여 촉각센서의 나아갈 방향을 제시하고자 한다.

Helical Instability Wave Excitation of Swirling Jets (스월제트에 관한 헬리컬 불안정파 자극)

  • Lee, Won-Joong;Taghavi, Ray-R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2005
  • The purpose of this investigation is to explore the possibility of using artificial mechanical means for excitation of shear layers with application in swirling jet mixing enhancement. For this purpose, a mechanical excitation device was designed and fabricated. The major system components consist of two subsonic nozzles, one swirl generator, and the excitation device. The experiments were carried out at various helical excitation modes; i.e., m=+0, m=$\pm$1, m=$\pm$2, m=$\pm$3, and m=$\pm$4. Axial mean velocity measurements were made with plane and helical wave excitation using a hot-wire anemometer. The results are compared with the baseline (plane-wave excitation) at various helical modes. The acquired data is presented in 3-D mesh plots and 2-D contour plots. It was observed that new device was effective in excitation of the helical instability waves and resulting in mixing enhancement of the swirling jet.

The effects of electrical current from a micro-electrical device on tooth movement (초소형 전기장치에 의한 미세 전류가 치아이동에 미치는 효과)

  • Kim, Dong-Hwan;Park, Young-Guk;Kang, Seung-Gu
    • The korean journal of orthodontics
    • /
    • v.38 no.5
    • /
    • pp.337-346
    • /
    • 2008
  • Objective: The purpose of this study was to determine whether an exogenous electric current to the alveolar bone surrounding a tooth being orthodontically treated can enhance tooth movement in human and to verify the effect of electric currents on tooth movement in a clinical aspect. Methods: This study was performed on 7 female orthodontic patients. The electric appliance was set in the maxilla to provide a direct electric current of $20{\mu}A$. The maxillary canine on one side was assigned as the experimental side, and the other as control. The experimental canine was provided with orthodontic force and electric current. The control side was given orthodontic force only. Electrical current was applied to experimental canines for 5 hours a day. The amount of canine movement was measured with an electronic caliper every week. Results: The amount of orthodontic tooth movement in the experimental side during 4 weeks was greater by 30% compared to that of the control side. The amount of increase in tooth movement in the experimental side was statistically significant. The amount of tooth movement in the experimental side during the first two weeks was !Bleater than that in the following two weeks. The amount of weekly tooth movement in the control side was decreased gradually. Conclusions: These results suggested that the exogenous electric current from the miniature electric device might accelerate orthodontic tooth movement by one third and have the potential to reduce orthodontic treatment duration.

A study on improvement of osseointegration around implants (임플란트 주위의 골융합(osseointegration) 향상에 관한 조사)

  • Yoon, Young-June
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.216-223
    • /
    • 2012
  • When the implants are inserted, the recovery period of bone matrix is around 8 to 12 weeks. The osseointegration plays an important role in recovery period of bone matrix around the implants. In this study, we surveys how mechanical stimuli, ultrasonic stimuli, laser stimuli, LED stimuli affects the osseointegration. We found that $1.47^{\sim}1.6MHz$ stimuli are ideal for all stimuli.

The Effect on Human Body by the Stimuli of Musics and Acoustic Vibrations (음악과 음향진동자극에 의한 인체에의 영향)

  • Moon, D.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.59-64
    • /
    • 2008
  • The present paper describes the effects on human body by music and vibroacoustic stimuli. The experiments were carried out six times for 3 subjects and have investigated the electroencephalogram of all subjects against six music stimulus having vibration or non-vibration. From the experimental results, we can distinguish which musics were useful for a relexation and a reduction of stress or effective for power of concentration. We made sure that the music and the vibroacoustic stimuli have been the more effective and the more sensitive than the only music stimuli. And the close investigation and examination to the effect of acoustic vibrations will be applied for healing of a disease and so on.

  • PDF