DOI QR코드

DOI QR Code

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Chulmin (Electronic Convergence Material & Device Research Center, Korea Electronic Technology Institute) ;
  • Choi, Yunhwa (JMJ Korea Co., Ltd.) ;
  • Jang, Kyung-Oun (Power conversion, Fairchild Semiconductor Ltd.) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2018.07.24
  • 심사 : 2018.09.20
  • 발행 : 2018.09.30

초록

Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.

키워드

참고문헌

  1. T. Matsukawa, and R. Shimada, "Efficiency improvement of AC/DC converter using SiC-based power electronics device", Proc. 20th IEEE/NPSS Symposium on Fusion Engineering, IEEE, 379 (2003).
  2. L. Coppola, D. Huff, F. Wang, R. Burgos, and D. Boroyevich, "Survey on high-temperature packaging materials for SiC-based power electronics modules", Proc. 38th IEEE Power s Conf., 2234 (2007).
  3. E. Cilio, J. Homberger, B. McPherson, R. Schupbach, A. Lostetter, and J. Garrett, "A novel high density 100kW three-phase silicon carbide (SIC) multichip power module (MCPM) inverter", in Proc. Appl. Power Electron. Conf. 666 (2007).
  4. C. N.-M. Ho, H. Breuninger, S. Pettersson, G. Escobar, and F. Canales, "A comparative performance study of an inter-leaved boost converter using commercial Si and SiC diodes for PV applications", IEEE Trans. Power Electron., 28(1), 289 (2013). https://doi.org/10.1109/TPEL.2012.2197830
  5. D. T. Morisette, J. A. Cooper, M. R. Melloch, G. M. Dolny, P. M. Shenoy, M. Zafrani, and J. Gladish, "Static and dynamic characterization of large-area high-current-density SiC Schottky diodes", IEEE Trans. Elec. Devices, 48(2), 349 (2001).
  6. D. T. Morisette, and J. A. Cooper, "Theoretical comparison of SiC PiN and Schottky diodes based on power dissipation considerations", IEEE Trans. Elec. Devices, 49(9), 1657 (2002).
  7. A. Sharma, S. J. Lee, Y. J. Jang, and J. P. Jung, "SiC based Technology for High Power Electronics and Packaging Applications", J. Microelectron. Packag. Soc., 21(2), 71 (2014). https://doi.org/10.6117/KMEPS.2014.21.2.071
  8. B. Ozpineci, and L. M. Tolbert, "Characterization of SiC Schottky diodes at different temperatures", IEEE Power Elec. Lett., 99(2), 54 (2003).
  9. K. Shenai, R. S. Scott, and B. J. Baliga, "Optimum semiconductors for high-power electronics", IEEE Trans. Elec. Devices, 36(9), 1811 (1989).
  10. M. Bhatnagar, P. K. McLarty, and B. Baliga, "Silicon-carbide high-voltage (400 V) Schottky barrier diodes", IEEE Elec. Device Lett., 13(10), 501 (1992). https://doi.org/10.1109/55.192814
  11. M. Bhatnagar, and B. J. Baliga, "Comparison of 6H-SiC, 3C-SiC, and Si for power devices", IEEE Trans. Elec. Devices, 40(3) 645 (1993).
  12. W. Wright, J. Carter, P. Alexandrov, M. Pan, M. Weiner, and J. Zhao, "Comparison of Si and SiC diodes during operation in three-phase inverter driving ac induction motor", Electron. Lett., 37(12) 787 (2001). https://doi.org/10.1049/el:20010535
  13. J. W. Yoon, J. H. Bang, Y. H. Ko, S. H. Yoo, J. K. Kim, and C. W. Lee, "Power module packaging technology with extended reliability for electric vehicle applications", J. Microelectron. Packag. Soc., 21(4), 1 (2014). https://doi.org/10.6117/kmeps.2014.21.4.001
  14. K. S. Kim, D. H. Choi, and S. B. Jung, "Overview on thermal management technology for high power device packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014). https://doi.org/10.6117/kmeps.2014.21.2.013
  15. I. W. Suh, H. S. Jung, Y. H. Lee, Y. H. Kim, and S. H. Choa, "Heat dissipation technology of IGBT module package", J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  16. Z. Wang, X. Shi, L. M. Tolbert, F. F. Wang, Z. Liang, D. Costinett, and B. J. Blalock, "A high temperature silicon carbide MOSFET power module with integrated silicon-on-insulatorbased gate drive", IEEE Trans. Power Electron., 30(3), 1432 (2015). https://doi.org/10.1109/TPEL.2014.2321174
  17. V. d'Alessandro, A. Magnani, M. Riccio, G. Breglio, A. Irace, N. Rinaldi, and A. Castellazzi, "SPICE modeling and dynamic electrothermal simulation of SiC power MOSFETs", Proc. 26th Int. Sym. Power Semicond., 285 (2014).
  18. U. Drofenik, and J. W. Kolar, "A general scheme for calculating switching-and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems", Proc. Int. Power Electron. Conf., 4 (2005).
  19. R. W. De Doncker, D. M. Divan, and M. H. Kheraluwala, "A three-phase soft-switched high-power-density DC/DC converter for high-power applications", IEEE trans. Ind. Appl., 27(1), 63 (1991).
  20. L. A. Moran, J. W. Dixon, and R. R. Wallace, "A three-phase active power filter operating with fixed switching frequency for reactive power and current harmonic compensation", IEEE Trans. Ind. Electron., 42(4), 402 (1995). https://doi.org/10.1109/41.402480
  21. S. Mounce, B. McPherson, R. Schupbach, and A. Lostetter, "Ultralightweight, High Efficiency SiC Based Power Electronic Converters for Extreme Environments", Proc. IEEE Aero. Conf., 1 (2006).
  22. C. Kanchanomai, Y. Miyashita, and Y. Mutoh, "Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi leadfree solders", J. Electron. Mater., 31(5), 456 (2002). https://doi.org/10.1007/s11664-002-0100-0
  23. V. Caccuri, X. Milhet, P. Gadaud, D. Bertheau, and M. Gerland, "Mechanical Properties of Sintered Ag as a New Material for Die Bonding: Influence of the Density", J. Electron. Mater., 43(12), 4510 (2014). https://doi.org/10.1007/s11664-014-3458-x
  24. P. T. Vianco, "Fatigue and creep of lead-free solder alloys: Fundamental properties", ASM International, 67 (2005).
  25. G. Chen, X.-H. Sun, P. Nie, Y.-H. Mei, G.-Q. Lu, and X. Chen, "High-temperature creep behavior of low-temperature-sintered nano-silver paste films", J. Electron. Mater., 41(4), 782 (2012). https://doi.org/10.1007/s11664-012-1903-2