DOI QR코드

DOI QR Code

후속 열처리에 따른 Cu 박막과 ALD Ru 확산방지층의 계면접착에너지 평가

Effect of Post-annealing on the Interfacial adhesion Energy of Cu thin Film and ALD Ru Diffusion Barrier Layer

  • 정민수 ((주)앰코테크놀로지 코리아) ;
  • 이현철 ((주)스태츠칩팩코리아) ;
  • 배병현 ((주)비츠로테크) ;
  • 손기락 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 이승준 (영남대학교 신소재공학부) ;
  • 김수현 (영남대학교 신소재공학부) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Jeong, Minsu (Amkor Technology Korea Inc.) ;
  • Lee, Hyeonchul (STATS ChipPAC Korea LTD.) ;
  • Bae, Byung-Hyun (VITZROTECH Co., Ltd.) ;
  • Son, Kirak (School of Materials Science and Engineering, Andong National University) ;
  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Seung-Joon (School of Materials Science and Engineering, Yeungnam University) ;
  • Kim, Soo-Hyun (School of Materials Science and Engineering, Yeungnam University) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 투고 : 2018.08.31
  • 심사 : 2018.09.28
  • 발행 : 2018.09.30

초록

차세대 초미세 Cu 배선 적용을 위한 원자층증착법(atomic layer deposition, ALD)을 이용하여 증착된 Ru확산 방지층과 Cu 박막 사이의 계면 신뢰성을 평가하기 위해, Ru 공정온도 및 $200^{\circ}C$ 후속 열처리 시간에 따라 4점굽힘시험으로 정량적인 계면접착에너지를 평가하였고, 박리계면을 분석하였다. 225, 270, $310^{\circ}C$ 세 가지 ALD Ru 공정온도에 따른 계면접착에너지는 각각 8.55, 9.37, $8.96J/m^2$로 유사한 값을 보였는데, 이는 증착온도 변화에 따라 Ru 결정립 크기 등 미세조직 및 비저항의 차이가 적어서, 계면 특성도 거의 차이가 없는 것으로 판단된다. $225^{\circ}C$의 공정온도에서 증착된 Ru 박막의 계면접착에너지는 $200^{\circ}C$ 후속 열처리시 250시간까지는 $7.59J/m^2$ 이상으로 유지되었으나, 500시간 후에는 $1.40J/m^2$로 급격히 감소하였다. 박리계면에 대한 X-선 광전자 분광기 분석 결과, 500시간 후 Cu 계면 산화로 인하여 계면접착 에너지가 감소한 것으로 확인되었다. 따라서 ALD Ru 박막은 계면신뢰성이 양호한 차세대 Cu 배선용 확산방지층 후보가 된다고 판단된다.

The effects of Ru deposition temperature and post-annealing conditions on the interfacial adhesion energies of atomic layer deposited (ALD) Ru diffusion barrier layer and Cu thin films for the advanced Cu interconnects applications were systematically investigated. The initial interfacial adhesion energies were 8.55, 9.37, $8.96J/m^2$ for the sample deposited at 225, 270, and $310^{\circ}C$, respectively, which are closely related to the similar microstructures and resistivities of Ru films for ALD Ru deposition temperature variations. And the interfacial adhesion energies showed the relatively stable high values over $7.59J/m^2$ until 250h during post-annealing at $200^{\circ}C$, while dramatically decreased to $1.40J/m^2$ after 500 h. The X-ray photoelectron spectroscopy Cu 2p peak separation analysis showed that there exists good correlation between the interfacial adhesion energy and the interfacial CuO formation. Therefore, ALD Ru seems to be a promising diffusion barrier candidate with reliable interfacial reliability for advanced Cu interconnects.

키워드

참고문헌

  1. M. T. Bohr, "Interconnect scaling - the real limiter to high performance ULSI", Proc. Proceedings of International Electron Devices Meeting (IEDM), Washington, IEEE (1995).
  2. M. J. Kim, and J. J. Kim, "Electrodeposition for the fabrication of copper interconnection in semiconductor devices", Korean Chem. Eng. Res., 52(1), 26 (2014). https://doi.org/10.9713/kcer.2014.52.1.26
  3. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni, "Damascene copper electroplating for chip interconnections", IBM J. Res. Dev., 42(5), 567 (1998). https://doi.org/10.1147/rd.425.0567
  4. P. M. Vereecken, R. A. Binstead, H. Deligianni, P. C. Andricacos, "The chemistry of additives in damascene copper plating", IBM J. Res. Dev., 49(1), 3 (2005). https://doi.org/10.1147/rd.491.0003
  5. O. J. Kwon, S. K. Cho, and J. J. Kim, "Electrochemical metallization processes for copper and silver metal interconnection", Korean Chem. Eng. Res., 47(2), 141 (2009).
  6. M. J. Kim, "The influences of pulse and pulse-reverse electrodeposition on the properties of Cu thin films and superfilling for the fabrication of Cu interconnection", in Ph.D. Thesis, Seoul National University, Seoul (2013).
  7. J. W. Pyun, W. C. Baek, J. Im, and P. S. Ho, "Effect of barrier process on electromigration reliability of Cu/porous low-k interconnects", J. Appl. Phys. 100(2), 023532 (2006). https://doi.org/10.1063/1.2219003
  8. H. P. Feng, M. Y. Cheng, Y. L. Wang, S. C. Chang, Y. Y. Wang, and C. C. Wan, "Mechanism for Cu void defect on various electroplated film conditions", Thin Solid Films, 498(1-2), 56 (2006). https://doi.org/10.1016/j.tsf.2005.07.062
  9. D. Gilkes, D. Ramappa, M. Oh, and S. M. Merchant, "Effect of copper seed aging on electroplating-induced defects in copper interconnects", J. Electron. Mater., 31(10), 1047 (2002). https://doi.org/10.1007/s11664-002-0041-7
  10. S. M. Rossnagel, and T. S. Kuan, "Time development of microstructure and resistivity for very thin Cu films", J. Vac. Sci. Technol., 20(6), 1911 (2002).
  11. T. E. Hong, K. Y. Mun, S. K. Choi, J. Y. Park, S. H. Kim, T. Cheon, W. K. Kim, B. Y. Lim, and S. Kim, "Atomic layer deposition of Ru thin film using $N_2/H_2$ plasma as a reactant", Thin Solid Films, 520(19), 6100 (2012). https://doi.org/10.1016/j.tsf.2012.05.069
  12. H. Kim, H. B. R. Lee, and W. J. Maeng, "Applications of atomic layer deposition to nanofabrication and emerging nanodevices", Thin Solid Films, 517(8), 2563 (2009). https://doi.org/10.1016/j.tsf.2008.09.007
  13. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, and R. Rosenberg, "Liner materials for direct electrodeposition of Cu", Appl. Phys. Lett. 83(12), 2330 (2003). https://doi.org/10.1063/1.1610256
  14. M. Abe, M. Ueki, M. Tada, T. Onodera, N. Furutake, K. Shimura, S. Saito, and Y. Hayashi, "Highly-oriented PVD ruthenium liner for low-resistance direct-plated Cu interconnects", Proc. 2007 IEEE International Interconnect Technology Conference (IITC), Burlingame, IEEE components (2007).
  15. S. Ogawa, N. Tarumi, M. Abe, M. Shiohara, H. Imamura, and S. Kondo, "Amorphous Ru/polycrystalline Ru highly reliable stacked layer barrier technology", Proc. 2008 International Interconnect Technology Conference (IITC), Burlingame, IEEE (2008).
  16. C. C. Yang, T. Spooner, S. Ponoth, K. Chanda, A. Simon, C. Lavoie, M. Lane, C. -K. Hu, E. Linger, L. Gignac, T. Shaw, S. Cohen, F. McFeely, and D. Edelstein, "Physical, Electrical, and Reliability Characterization of Ru for Cu Interconnects", Proc. 2006 International Interconnect Technology Conference (IITC), Burlingame, IEEE (2006).
  17. R. Chan, T. N. Arunagiri, Y. Zhang, O. Chyan, R. M. Wallace, M. J. Kim, and T. Q. Hurd, "Diffusion studies of copper on ruthenium thin film: A plateable copper diffusion barrier", Electrochem. Solid-State Lett., 7(8), G154 (2004).
  18. H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, and Y. Shimogaki, "Cu wettability and diffusion barrier property of Ru thin film for Cu metallization" J. Electrochem. Soc., 152(8), G594 (2005). https://doi.org/10.1149/1.1939353
  19. M. W. Lane, E. G. Liniger, and J. R. Lloyd, "Relationship between interfacial adhesion and electromigration in Cu metallization", J. Appl. Phys. 93(3), 1417 (2003) https://doi.org/10.1063/1.1532942
  20. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Eng. Fract. Mech., 6(1), 141 (1998). https://doi.org/10.1016/0013-7944(74)90053-8
  21. J. W. Kim, K. S. Kim, H. J. Lee, H. Y. Kim, Y. B. Park, and S. M. Hyun, "Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system", J. Microelectron. Packag. Soc., 18(4), 11 (2011). https://doi.org/10.6117/kmeps.2011.18.4.011
  22. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, "A test specimen for determining the fracture resistance of bimaterial interfaces", J. Appl. Mech., 56(1), 77 (1989). https://doi.org/10.1115/1.3176069
  23. T. Scherban. B. Sun, J. Blaine, C. Block. B. Jin, and E. Andideh, "Interfacial adhesion of copper-low k interconnects", Proc. 2001 International Interconnect Technology Conference (IITC), Burlingame, IEEE Components (2001).
  24. J. H. Jung, S. J. Lee, H. J. Lee, M. Y. Lee, T. Cheon, S. I. Bae, M. Saito, K. Suzuki, S. Nabeya, J. Lee, S. Kim, S. Yeom, J. H. Seo, and S. H. Kim, "Atomic Layer Deposition of Ru Thin Films Using a New Beta-Diketonate Ru Precursor and $NH_3$ Plasma as a Reactant", J. Nanosci. Nanotechnol., 15(11), 8472 (2015). https://doi.org/10.1166/jnn.2015.11452
  25. H. J. Lee, T. E. Hong, and S. H. Kim, "Atomic layer deposited self-forming Ru-Mn diffusion barrier for seedless Cu interconnects", J. Alloys Compd., 686(25), 1025 (2016).
  26. T. K. Eom, S. H. Kim, K. S. Park, S. Kim, and H. Kim, "Formation of Nano-Crystalline Ru-Based Ternary Thin Films by Plasma-Enhanced Atomic Layer Deposition", Electrochem. Solid-State Lett., 14(1), D10 (2011).
  27. M. W. Lane, J. M. Snodgrass, and R. H. Dauskardt, "Environmental effects on interfacial adhesion", Microelectron. Reliab., 41(9-10), 1615 (2001). https://doi.org/10.1016/S0026-2714(01)00150-0
  28. M. S. Jeong, B. H. Bae, J. K. Kim, H. O. Kang, W. J. Hwang, J. M. Yang, and Y. B. Park, "Effects of post-annealing/temperature/ humidity treatments on the interfacial reliability of Cu capping layer for advanced Cu interconnects", Proc. 15th International Conference on Electronic Materials and Packaging and 12th International Symposium on Microelectronics and Packaging (EMAP/ISMP), Seoul, KMEPS (2013).
  29. M. Jeong, J. K. Kim, H. O. Kang, W. J. Hwang, and Y. B. Park, "Effects of wet chemical treatment and thermal cycle conditions on the interfacial adhesion energy of Cu/SiNx thin film interfaces", J. Microelectron. Packag. Soc., 21(1), 45 (2014). https://doi.org/10.6117/kmeps.2014.21.1.045