DOI QR코드

DOI QR Code

Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase

  • Choi, Min Sik (Lab of Pharmacology, College of Pharmacy, Dongduk Women's University)
  • Received : 2018.09.18
  • Accepted : 2018.10.06
  • Published : 2018.11.01

Abstract

Nitric oxide (NO) mediates various physiological and pathological processes, including cell proliferation, differentiation, and inflammation. Protein S-nitrosylation (SNO), a NO-mediated reversible protein modification, leads to changes in the activity and function of target proteins. Recent findings on protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) have unveiled the mechanism of NO modulation of specific signaling pathways. The intracellular level of S-nitrosoglutathione (GSNO), a major reactive NO species, is controlled by GSNO reductase (GSNOR), a major regulator of NO/SNO signaling. Increasing number of GSNOR-related studies have shown the important role that denitrosylation plays in cellular NO/SNO homeostasis and human pathophysiology. This review introduces recent evidence of GSNO-mediated NO/SNO signaling depending on GSNOR expression or activity. In addition, the applicability of GSNOR as a target for drug therapy will be discussed in this review.

Keywords

References

  1. Al-Sa'doni, H. H. and Ferro, A. (2005) Current status and future possibilities of nitric oxide-donor drugs: focus on S-nitrosothiols. Mini Rev. Med. Chem. 5, 247-254. https://doi.org/10.2174/1389557053175399
  2. Bateman, R. L., Rauh, D., Tavshanjian, B. and Shokat, K. M. (2008) human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J. Biol. Chem. 283, 35756-35762. https://doi.org/10.1074/jbc.M807125200
  3. Beigi, F., Gonzalez, D. R., Minhas, K. M., Sun, Q. A., Foster, M. W., Khan, S. A., Treuer, A. V., Dulce, R. A., Harrison, R. W., Saraiva, R. M., Premer, C., Schulman, I. H., Stamler, J. S. and Hare, J. M. (2012) Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl. Acad. Sci. U.S.A.109, 4314-4319. https://doi.org/10.1073/pnas.1113319109
  4. Benhar, M., Forrester, M. T., Hess, D. T. and Stamler, J. S. (2008) Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins. Science 320, 1050-1054. https://doi.org/10.1126/science.1158265
  5. Bonaventura, C., Godette, G., Ferruzzi, G., Tesh, S., Stevens, R. D. and Henkens, R. (2002) Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease. Biophys. Chem. 98, 165-181. https://doi.org/10.1016/S0301-4622(02)00092-3
  6. Brennan, A. M., Won Suh, S., Joon Won, S., Narasimhan, P., Kauppinen, T. M., Lee, H., Edling, Y., Chan, P. H. and Swanson, R. A. (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci.12, 857-863. https://doi.org/10.1038/nn.2334
  7. Broniowska, K. A. and Hogg, N. (2012) The chemical biology of Snitrosothiols. Antioxid. Redox Signal. 17, 969-980. https://doi.org/10.1089/ars.2012.4590
  8. Brown-Steinke, K., deRonde, K., Yemen, S. and Palmer, L. A. (2010) gender differences in S-nitrosoglutathione reductase activity in the lung. PLoS ONE 5, e14007. https://doi.org/10.1371/journal.pone.0014007
  9. Carvalho-Filho, M. A., Ueno, M., Hirabara, S. M., Seabra, A. B., Carvalheira, J. B. C., de Oliveira, M. G., Velloso, L. A., Curi, R. and Saad, M. J. A. (2005) S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54, 959-967. https://doi.org/10.2337/diabetes.54.4.959
  10. Carver, D. J., Gaston, B., deRonde, K. and Palmer, L. A. (2007) Aktmediated activation of hif-1 in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am. J. Respir. Cell Mol. Biol. 37, 255-263. https://doi.org/10.1165/rcmb.2006-0289SM
  11. Chen, Y. J., Ching, W. C., Lin, Y. P. and Chen, Y. J. (2013) Methods for detection and characterization of protein S-nitrosylation. Methods 62, 138-150. https://doi.org/10.1016/j.ymeth.2013.04.016
  12. Choi, M. S., Nakamura, T., Cho, S. J., Han, X., Holland, E. A., Qu, J., Petsko, G. A., Yates, J. R., Liddington, R. C. and Lipton, S. A. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson's disease models. J. Neurosci. 34, 15123-15131. https://doi.org/10.1523/JNEUROSCI.4751-13.2014
  13. Choi, Y. B., Tenneti, L., Le, D. A., Ortiz, J., Bai, G., Chen, H. S. V. and Lipton, S. A. (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat. Neurosci. 3, 15-21. https://doi.org/10.1038/71090
  14. Chung, K. K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C., Marsh, L., Dawson, V. L. and Dawson, T. M. (2004) S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function. Science 304, 1328-1331. https://doi.org/10.1126/science.1093891
  15. Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. and Ting, J. P.Y. (2006) DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. U.S A. 103, 15091-15096. https://doi.org/10.1073/pnas.0607260103
  16. Cox, A. G., Saunders, D. C., Kelsey, P. B., Jr., Conway, A. A., Tesmenitsky, Y., Marchini, J. F., Brown, K. K., Stamler, J. S., Colagiovanni, D. B., Rosenthal, G. J., Croce, K. J., North, T. E. and Goessling, W. (2014) S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep. 6, 56-69. https://doi.org/10.1016/j.celrep.2013.12.007
  17. Devarie-Baez, N. O., Zhang, D., Li, S., Whorton, A. R. and Xian, M. (2013) Direct methods for detection of protein S-nitrosylation. Methods 62, 171-176. https://doi.org/10.1016/j.ymeth.2013.04.018
  18. Eo, S. H., Cho, H. and Kim, S. J. (2013) Resveratrol inhibits nitric oxide-induced apoptosis via the NF-kappa B pathway in rabbit articular chondrocytes. Biomol. Ther. (Seoul) 21, 364-370. https://doi.org/10.4062/biomolther.2013.029
  19. Fauconnier, J., Thireau, J., Reiken, S., Cassan, C., Richard, S., Matecki, S., Marks, A. R. and Lacampagne, A. (2010) Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U.S.A. 107, 1559-1564. https://doi.org/10.1073/pnas.0908540107
  20. Foster, M. W., Hess, D. T. and Stamler, J. S. (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 15, 391-404. https://doi.org/10.1016/j.molmed.2009.06.007
  21. Giustarini, D., Milzani, A., Colombo, R., Dalle-Donne, I. and Rossi, R. (2003) Nitric oxide and S-nitrosothiols in human blood. Clin. Chim. Acta 330, 85-98. https://doi.org/10.1016/S0009-8981(03)00046-9
  22. Gomes, S. A., Rangel, E. B., Premer, C., Dulce, R. A., Cao, Y., Florea, V., Balkan, W., Rodrigues, C. O., Schally, A. V. and Hare, J. M. (2013) S-nitrosoglutathione reductase (GSNOR) enhances vasculogenesis by mesenchymal stem cells. Proc. Natl. Acad. Sci. U.S.A. 110, 2834-2839. https://doi.org/10.1073/pnas.1220185110
  23. Grasemann, H., Gaston, B., Fang, K., Paul, K. and Ratjen, F. (1999) Decreased levels of nitrosothiols in the lower airways of patients with cystic fibrosis and normal pulmonary function. J. Pediatr. 135, 770-772. https://doi.org/10.1016/S0022-3476(99)70101-0
  24. Green, L. S., Chun, L. E., Patton, A. K., Sun, X., Rosenthal, G. J. and Richards, J. P. (2012) Mechanism of inhibition for N6022, a first-inclass drug targeting S-nitrosoglutathione reductase. Biochemistry 51, 2157-2168. https://doi.org/10.1021/bi201785u
  25. Gu, Z., Kaul, M., Yan, B., Kridel, S. J., Cui, J., Strongin, A., Smith, J. W., Liddington, R. C. and Lipton, S. A. (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186-1190. https://doi.org/10.1126/science.1073634
  26. Guerra, D., Ballard, K., Truebridge, I. and Vierling, E. (2016) S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55, 2452-2464. https://doi.org/10.1021/acs.biochem.5b01373
  27. Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H. and Sawa, A. (2005) Snitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665-674. https://doi.org/10.1038/ncb1268
  28. Hatzistergos, K. E., Paulino, E. C., Dulce, R. A., Takeuchi, L. M., Bellio, M. A., Kulandavelu, S., Cao, Y., Balkan, W., Kanashiro-Takeuchi, R. M. and Hare, J. M. (2015) S-nitrosoglutathione reductase deficiency enhances the proliferative expansion of adult heart progenitors and myocytes post myocardial infarction. J. Am. Heart Assoc. 4, e001974.
  29. Hess, D. T., Matsumoto, A., Kim, S.O., Marshall, H. E. and Stamler, J. S. (2005) Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150-166. https://doi.org/10.1038/nrm1569
  30. Hess, D. T. and Stamler, J. S. (2012) Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 287, 4411-4418. https://doi.org/10.1074/jbc.R111.285742
  31. Hou, Q., Jiang, H., Zhang, X., Guo, C., Huang, B., Wang, P., Wang, T., Wu, K., Li, J., Gong, Z., Du, L., Liu, Y., Liu, L. and Chen, C. (2011) Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila. Nitric Oxide 24, 17-24. https://doi.org/10.1016/j.niox.2010.09.007
  32. Hoog, J. O. and Ostberg, L. J. (2011) Mammalian alcohol dehydrogenases - a comparative investigation at gene and protein levels. Chem. Biol. Interact. 191, 2-7. https://doi.org/10.1016/j.cbi.2011.01.028
  33. Huang, Y., Man, H. Y., Sekine-Aizawa, Y., Han, Y., Juluri, K., Luo, H., Cheah, J., Lowenstein, C., Huganir, R. L. and Snyder, S. H. (2005) S-nitrosylation of N-ethylmaleimide sensitive factor mediates surface expression of AMPA receptors. Neuron 46, 533-540. https://doi.org/10.1016/j.neuron.2005.03.028
  34. Hur, M. W. and Edenberg, H. J. (1992) Cloning and characterization of the ADH5 gene encoding human alcohol dehydrogenase 5, formaldehyde dehydrogenase. Gene 121, 305-311. https://doi.org/10.1016/0378-1119(92)90135-C
  35. Iyer, A. K. V., Rojanasakul, Y. and Azad, N. (2014) Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide 42, 9-18. https://doi.org/10.1016/j.niox.2014.07.002
  36. Jaffrey, S. R. and Snyder, S. H. (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, pl1.
  37. Jelski, W., Orywal, K., Panek, B., Gacko, M., Mroczko, B. and Szmitkowski, M. (2009) The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the wall of abdominal aortic aneurysms. Exp. Mol. Pathol. 87, 59-62. https://doi.org/10.1016/j.yexmp.2009.03.001
  38. Jelski, W. and Szmitkowski, M. (2008) Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin. Chim. Acta 395, 1-5. https://doi.org/10.1016/j.cca.2008.05.001
  39. Jiang, H., Polhemus, D. J., Islam, K. N., Torregrossa, A. C., Li, Z., Potts, A., Lefer, D. J. and Bryan, N. S. (2016) Nebivolol acts as a Snitrosoglutathione reductase inhibitor. J. Cardiovasc. Pharmacol. Ther. 21, 478-485. https://doi.org/10.1177/1074248415626300
  40. Kornberg, M. D., Sen, N., Hara, M. R., Juluri, K. R., Nguyen, J. V. K., Snowman, A. M., Law, L., Hester, L. D. and Snyder, S. H. (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat. Cell Biol. 12, 1094-1100. https://doi.org/10.1038/ncb2114
  41. Laniewska-Dunaj, M., Jelski, W., Orywal, K., Kochanowicz, J., Rutkowski, R. and Szmitkowski, M. (2013) The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer. Neurochem. Res. 38, 1517-1521. https://doi.org/10.1007/s11064-013-1053-9
  42. Lima, B., Lam, G. K., Xie, L., Diesen, D. L., Villamizar, N., Nienaber, J., Messina, E., Bowles, D., Kontos, C. D., Hare, J. M., Stamler, J. S. and Rockman, H. A. (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc. Natl. Acad. Sci. U.S.A. 106, 6297-6302. https://doi.org/10.1073/pnas.0901043106
  43. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J. and Stamler, J. S. (1993) A redoxbased mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364, 626-632. https://doi.org/10.1038/364626a0
  44. Lipton, S. A., Choi, Y. B., Takahashi, H., Zhang, D., Li, W., Godzik, A. and Bankston, L. A. (2002) Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation. Trends Neurosci. 25, 474-480. https://doi.org/10.1016/S0166-2236(02)02245-2
  45. Liu, L., Yan, Y., Zeng, M., Zhang, J., Hanes, M. A., Ahearn, G., McMahon, T. J., Dickfeld, T., Marshall, H. E., Que, L. G. and Stamler, J. S. (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617-628. https://doi.org/10.1016/S0092-8674(04)00131-X
  46. Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J. S. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490-494. https://doi.org/10.1038/35068596
  47. Methner, C., Chouchani, E. T., Buonincontri, G., Pell, V. R., Sawiak, S. J., Murphy, M. P. and Krieg, T. (2014) Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur. J. Heart Fail. 16, 712-717. https://doi.org/10.1002/ejhf.100
  48. Mitchell, D. A. and Marletta, M. A. (2005) Thioredoxin catalyzes the Snitrosation of the caspase-3 active site cysteine. Nat. Chem. Biol. 1, 154-158. https://doi.org/10.1038/nchembio720
  49. Montagna, C., Di Giacomo, G., Rizza, S., Cardaci, S., Ferraro, E., Grumati, P., De Zio, D., Maiani, E., Muscoli, C., Lauro, F., Ilari, S., Bernardini, S., Cannata, S., Gargioli, C., Ciriolo, M. R., Cecconi, F., Bonaldo, P. and Filomeni, G. (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid. Redox Signal. 21, 570-587. https://doi.org/10.1089/ars.2013.5696
  50. Moon, Y., Cao, Y., Zhu, J., Xu, Y., Balkan, W., Buys, E. S., Diaz, F., Kerrick, W. G., Hare, J. M. and Percival, J. M. (2017) GSNOR Deficiency enhances in situ skeletal muscle strength, fatigue resistance, and RyR1 S-nitrosylation without impacting mitochondrial content and activity. Antioxid. Redox Signal. 26, 165-181. https://doi.org/10.1089/ars.2015.6548
  51. Murray, C. I., Uhrigshardt, H., O'Meally, R. N., Cole, R. N. and Van Eyk, J. E. (2012) Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol. Cell. Proteomics 11, M111.013441. https://doi.org/10.1074/mcp.M111.013441
  52. Nakamura, T., Wang, L., Wong, C. C., Scott, F. L., Eckelman, B. P., Han, X., Tzitzilonis, C., Meng, F., Gu, Z., Holland, E. A., Clemente, A. T., Okamoto, S., Salvesen, G. S., Riek, R., Yates, J. R., 3rd and Lipton, S. A. (2010) Transnitrosylation of XIAP regulates caspasedependent neuronal cell death. Mol. Cell 39, 184-195. https://doi.org/10.1016/j.molcel.2010.07.002
  53. NamKoong, S. and Kim, Y. M. (2010) Therapeutic application of nitric oxide in human diseases. Biomol. Ther. (Seoul) 18, 351-362. https://doi.org/10.4062/biomolther.2010.18.4.351
  54. Park, P. H., Hur, J., Lee, D. S., Kim, Y. C., Jeong, G. S. and Sohn, D. H. (2011) Inhibition of Nitric oxide production by ethyl digallates isolated from galla rhois in RAW 264.7 macrophages. Biomol. Ther. (Seoul) 19, 419-424. https://doi.org/10.4062/biomolther.2011.19.4.419
  55. Pawloski, J. R., Hess, D. T. and Stamler, J. S. (2001) Export by red blood cells of nitric oxide bioactivity. Nature 409, 622-626. https://doi.org/10.1038/35054560
  56. Qu, J., Nakamura, T., Cao, G., Holland, E. A., McKercher, S. R. and Lipton, S. A. (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc. Natl. Acad. Sci. U.S.A. 108, 14330-14335. https://doi.org/10.1073/pnas.1105172108
  57. Que, L. G., Liu, L., Yan, Y., Whitehead, G. S., Gavett, S. H., Schwartz, D. A. and Stamler, J. S. (2005) Protection from experimental asthma by an endogenous bronchodilator. Science 308, 1618-1621. https://doi.org/10.1126/science.1108228
  58. Que, L. G., Yang, Z., Stamler, J. S., Lugogo, N. L. and Kraft, M. (2009) S-nitrosoglutathione reductase. Am. J. Respir. Crit. Care Med. 180, 226-231. https://doi.org/10.1164/rccm.200901-0158OC
  59. Ryu, Y. K., Lee, J. W. and Moon, E. Y. (2015) Thymosin beta-4, actinsequestering protein regulates vascular endothelial growth factor expression via hypoxia-inducible nitric oxide production in hela cervical cancer cells. Biomol. Ther. (Seoul) 23, 19-25. https://doi.org/10.4062/biomolther.2014.101
  60. Sanghani, P. C., Davis, W. I., Fears, S. L., Green, S. L., Zhai, L., Tang, Y., Martin, E., Bryan, N. S. and Sanghani, S. P. (2009) Kinetic and cellular characterization of novel inhibitors of S-nitrosoglutathione reductase. J. Biol. Chem. 284, 24354-24362. https://doi.org/10.1074/jbc.M109.019919
  61. Sengupta, R. and Holmgren, A. (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid. Redox Signal. 18, 259-269. https://doi.org/10.1089/ars.2012.4716
  62. Seth, D. and Stamler, J. S. (2011) The SNO-proteome: causation and classifications. Curr. Opin. Chem. Biol. 15, 129-136. https://doi.org/10.1016/j.cbpa.2010.10.012
  63. Smith, M. (1986) Genetics of human alcohol and aldehyde dehydrogenases. Adv. Hum. Genet. 15, 249-290.
  64. Snyder, A. H., McPherson, M. E., Hunt, J. F., Johnson, M., Stamler, J. S. and Gaston, B. (2002) Acute effects of aerosolized S-nitrosoglutathione in cystic fibrosis. Am. J. Respir. Crit. Care Med. 165, 922-926. https://doi.org/10.1164/ajrccm.165.7.2105032
  65. Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J. and Loscalzo, J. (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U.S.A. 89, 444-448. https://doi.org/10.1073/pnas.89.1.444
  66. Sun, X., Qiu. J., Strong, S. A., Green, L. S., Wasley, J. W., Blonder, J. P., Colagiovanni, D. B., Stout, A. M., Mutka, S. C., Richards, J. P. and Rosenthal, G. J. (2012) Structure-activity relationship of pyrrole based S-nitrosoglutathione reductase inhibitors: carboxamide modification. Bioorg. Med. Chem. Lett. 22, 2338-2342. https://doi.org/10.1016/j.bmcl.2012.01.047
  67. Takahashi, H., Shin, Y., Cho, S. J., Zago, W. M., Nakamura, T., Gu, Z., Ma, Y., Furukawa, H., Liddington, R., Zhang, D., Tong, G., Chen, H. S. and Lipton, S. A. (2007) Hypoxia enhances S-nitrosylationmediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53, 53-64. https://doi.org/10.1016/j.neuron.2006.11.023
  68. Tian, J., Kim, S. F., Hester, L. and Snyder, S. H. (2008) S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 105, 10537-10540. https://doi.org/10.1073/pnas.0804852105
  69. Trujillo, M., Alvarez, M. N., Peluffo, G., Freeman, B. A. and Radi, R. (1998) Xanthine oxidase-mediated decomposition of S-nitrosothiols. J. Biol. Chem. 273, 7828-7834. https://doi.org/10.1074/jbc.273.14.7828
  70. Uehara, T., Nakamura, T., Yao, D., Shi, Z.Q., Gu, Z., Ma, Y., Masliah, E., Nomura, Y. and Lipton, S. A. (2006) S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441, 513-517. https://doi.org/10.1038/nature04782
  71. Ulrich, C., Quilici, D. R., Schlauch, K. A. and Buxton, I. L. (2013) The human uterine smooth muscle S-nitrosoproteome fingerprint in pregnancy, labor, and preterm labor. Am. J. Physiol. Cell Physiol. 305, C803-C816. https://doi.org/10.1152/ajpcell.00198.2013
  72. Wei, W., Li, B., Hanes, M. A., Kakar, S., Chen, X. and Liu, L. (2010) S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci. Transl. Med. 2, 19ra13.
  73. Wu, C., Liu, T., Chen, W., Oka, S., Fu, C., Jain, M. R., Parrott, A. M., Baykal, A. T., Sadoshima, J. and Li, H. (2010) Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol. Cell. Proteomics 9, 2262-2275. https://doi.org/10.1074/mcp.M110.000034
  74. Wu, K., Zhang, Y., Wang, P., Zhang, L., Wang, T. and Chen, C. (2014) Activation of GSNOR transcription by NF-${\kappa}$B negatively regulates NGF-induced PC12 differentiation. Free Radic. Res. 48, 1011-1017. https://doi.org/10.3109/10715762.2014.906743
  75. Yang, Z., Wang, Z. E., Doulias, P. T., Wei, W., Ischiropoulos, H., Locksley, R. M. and Liu, L. (2010) Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 185, 6664-6669. https://doi.org/10.4049/jimmunol.1000080
  76. Yao, D., Gu, Z., Nakamura, T., Shi, Z. Q., Ma, Y., Gaston, B., Palmer, L. A., Rockenstein, E. M., Zhang, Z., Masliah, E., Uehara, T. and Lipton, S. A. (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl. Acad. Sci. U.S.A. 101, 10810-10814. https://doi.org/10.1073/pnas.0404161101
  77. Zaman, K., McPherson, M., Vaughan, J., Hunt, J., Mendes, F., Gaston, B. and Palmer, L. A. (2001) S-Nitrosoglutathione Increases Cystic Fibrosis Transmembrane Regulator Maturation. Biochem. Biophys. Res. Commun. 284, 65-70. https://doi.org/10.1006/bbrc.2001.4935

Cited by

  1. The Antioxidant and Antiproliferative Activities of 1,2,3-Triazolyl-L-Ascorbic Acid Derivatives vol.20, pp.19, 2018, https://doi.org/10.3390/ijms20194735
  2. Can Serum Nitrosoproteome Predict Longevity of Aged Women? vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21239009
  3. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein vol.21, pp.23, 2018, https://doi.org/10.3390/ijms21239187
  4. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation vol.26, pp.2, 2021, https://doi.org/10.3390/molecules26020435
  5. S-nitrosothiols signaling in cystic fibrosis airways vol.46, pp.4, 2018, https://doi.org/10.1007/s12038-021-00223-w
  6. Characterizing the effect of S-nitrosoglutathione on Saccharomyces cerevisiae: Upregulation of alcohol dehydrogenase and inactivation of aconitase vol.113, pp.None, 2018, https://doi.org/10.1016/j.procbio.2021.12.011