References
-
Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, et al. 2004. Fungus-mediated biosynthesis and characterization of
$TiO_2$ nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 91: 23-29. -
Patidar V, Jain P. 2017. Green synthesis of
$TiO_2$ nanoparticle using Moringa Oleifera leaf extract. Int. Res. J. Eng. Tech. 4: 470-473. - Mbonyiryivuze A, Zongo S, Diallo A, Bertrand S, Minani E, Yadav LL, et al. 2015. Titanium dioxide nanoparticles biosynthesis for dye sensitized solar cells application: review. Phys. Mater. Chem. 3: 12-17.
-
Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M, Cab C, de Coss Rd, Oskam G. 2008. Phase-pure
$TiO_2$ nanoparticles: anatase, brookite and rutile. Nanotechnology 19: 145605. https://doi.org/10.1088/0957-4484/19/14/145605 - Li X, Xu H, Chen Z-S, Chen G. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011: 1-16.
-
Sunkar S, Nachiyar CV, Lerensha R, Renugadevi K. 2014. Biogenesis of
$TiO_2$ nanoparticles using endophytic Bacillus cereus. J. Nanopart. Res. 16: 2681. https://doi.org/10.1007/s11051-014-2681-y - Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, et al. 2005. Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15: 2583-2589. https://doi.org/10.1039/b503008k
- Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, et al. 2011. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater. Lett. 65: 2745-2747. https://doi.org/10.1016/j.matlet.2011.05.077
- Singh P. 2016. Biosynthesis of titanium dioxide nanoparticles and their antibacterial property. Int. J. Chem. Molecul. Eng. 10: 260-263.
- Durairaj B, Xavier T, Muthu, S. 2014. Fungal generated titanium dioxide nanoparticles: a potent mosquito (Aedes aegypti) larvicidal agent. Sch. Acad. J. Biosci. 2: 651-658.
-
Raliya R, Biswas P, Tarafdar J. 2015.
$TiO_2$ nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. 5: 22-26. https://doi.org/10.1016/j.btre.2014.10.009 - Ordenes-Aenishanslins NA, Saona LA, Duran-Toro VM, Monras JP, Bravo DM, Perez-Donoso JM. 2014. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb. Cell. Fact. 13: 1-10. https://doi.org/10.1186/1475-2859-13-1
- Jha AK, Prasad K. 2010. Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol. J. 5: 285-291. https://doi.org/10.1002/biot.200900221
-
Jha AK, Prasad K, Kulkarni A. 2009. Synthesis of
$TiO_2$ nanoparticles using microorganisms. Colloids Surf. B Biointerfaces 71: 226-229. https://doi.org/10.1016/j.colsurfb.2009.02.007 -
Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata K, et al. 2013. Broad spectrum microbicidal activity of photocatalysis by
$TiO_2$ . Catalysts 3: 310-323. https://doi.org/10.3390/catal3010310 -
He W, Cui J, Yue Y, Zhang X, Xia X, Liu H, et al. 2011. High-performance
$TiO_2$ from Baker's yeast. J. Colloid Interface Sci. 354: 109-115. https://doi.org/10.1016/j.jcis.2010.10.035 -
Senarathna U, Fernando SS, Gunasekara TD, Weerasekera MM, Hewageegana HG, Arachchi ND, et al. 2017. Enhanced antibacterial activity of
$TiO_2$ nanoparticle surface modified with Garcinia zeylanica extract. Chem. Cent. J. 11: 1-7. https://doi.org/10.1186/s13065-016-0232-6 -
Bao S-J, Lei C, Xu M-W, Cai C-J, Jia D-Z. 2012. Environment-friendly biomimetic synthesis of
$TiO_2$ nanomaterials for photocatalytic application. Nanotechnology 23: 1-7. -
Periyat P, Baiju KV, Mukundan P, Pillai PK, Warrier KGK. 2008. High temperature stable mesoporous anatase
$TiO_2$ photocatalyst achieved by silica addition. Appl. Catal. A 349: 13-19. https://doi.org/10.1016/j.apcata.2008.07.022 - Peiris MK, Gunasekara CP, Jayaweera PM, Arachchi ND, Fernando N. 2017. Biosynthesized silver nanoparticles: are they effective antimicrobials? Mem. Inst. Oswaldo Cruz. 112: 537-543. https://doi.org/10.1590/0074-02760170023
-
Ahmad R, Mohsin M, Ahmad T, Sardar M. 2015. Alpha amylase assisted synthesis of
$TiO_2$ nanoparticles: structural characterization and application as antibacterial agents. J. Hazard. Mater. 283: 171-177. https://doi.org/10.1016/j.jhazmat.2014.08.073 - Johnson JM, Kinsinger N, Sun C, Li D, Kisailus D. 2012. Urease-mediated room-temperature synthesis of nanocrystalline titanium dioxide. J. Am. Chem. Soc. 134: 13974-13977. https://doi.org/10.1021/ja306884e
-
Lin W, Pang W, Sun J, Shen J. 1999. Lamellar
$TiO_2$ mesophase with an unusual room temperature photoluminescence. J. Mater. Chem. 9: 641-642. https://doi.org/10.1039/a808211a -
Mehranpour H, Askari M, Ghamsari MS. 2011. Nucleation and growth of
$TiO_2$ nanoparticles. Nanomaterials InTech. - Yan Q-Z, Su X-T, Huang Z-Y, Ge C-C. 2006. Sol-gel autoigniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders. J. Eur. Ceram. Soc. 26: 915-921. https://doi.org/10.1016/j.jeurceramsoc.2004.11.017
- Chen X, Lou YB, Samia AC, Burda C, Gole JL. 2005. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv. Funct. Mater. 15: 41-49. https://doi.org/10.1002/adfm.200400184
-
Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC. 2003. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase
$TiO_2$ using EPR. J. Phys. Chem. B 107: 4545-4549. https://doi.org/10.1021/jp0273934 -
Serpone N, Lawless D, Khairutdinov R. 1995. Size effects on the photophysical properties of colloidal anatase
$TiO_2$ particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99: 16646-16654. https://doi.org/10.1021/j100045a026 - Diffey BL. 2002. Sources and measurement of ultraviolet radiation. Methods 28: 4-13. https://doi.org/10.1016/S1046-2023(02)00204-9
-
Linsebigler AL, Lu G, Yates Jr JT. 1995. Photocatalysis on
$TiO_2$ surfaces: principles, mechanisms, and selected results. Chem. Rev. 95: 735-758. https://doi.org/10.1021/cr00035a013 -
Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. 1999. Bactericidal activity of photocatalytic
$TiO_2$ reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094-4098. -
Lin X, Li J, Ma S, Liu G, Yang K, Tong M, et al. 2014. Toxicity of
$TiO_2$ nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9: e110247. https://doi.org/10.1371/journal.pone.0110247 -
Carre G, Hamon E, Ennahar S, Estner M, Lett M-C, Horvatovich P, et al. 2014.
$TiO_2$ photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol. 80: 2573-2581. https://doi.org/10.1128/AEM.03995-13 -
Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, et al. 2014. Understanding the antimicrobial mechanism of
$TiO_2$ -based nanocomposite films in a pathogenic bacterium. Sci. Rep. 4: 4134(1-9).
Cited by
- The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection vol.24, pp.12, 2018, https://doi.org/10.3390/molecules24122280
- High Potency of Organic and Inorganic Nanoparticles to Treat Cystic Echinococcosis: An Evidence-Based Review vol.10, pp.12, 2018, https://doi.org/10.3390/nano10122538
- Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements vol.50, pp.24, 2018, https://doi.org/10.1080/10643389.2019.1705103
- Green Chemistry: Evolution in Architecting Schemes for Perfecting the Synthesis Methodology of the Functionalized Nanomaterials vol.6, pp.13, 2018, https://doi.org/10.1002/slct.202004560
- Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects vol.11, pp.6, 2018, https://doi.org/10.3390/biom11060886