DOI QR코드

DOI QR Code

Saccharification of Brown Macroalgae Using an Arsenal of Recombinant Alginate Lyases: Potential Application in the Biorefinery Process

  • Gimpel, Javier A. (Centre for Biotechnology and Bioengineering CEBIB, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile) ;
  • Ravanal, Maria Cristina (Centre for Biotechnology and Bioengineering CEBIB, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile) ;
  • Salazar, Oriana (Centre for Biotechnology and Bioengineering CEBIB, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile) ;
  • Lienqueo, Maria Elena (Centre for Biotechnology and Bioengineering CEBIB, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile)
  • Received : 2018.05.23
  • Accepted : 2018.08.20
  • Published : 2018.10.28

Abstract

Alginate lyases (endo and exo-lyases) are required for the degradation of alginate into its constituting monomers. Efficient bioethanol production and extraction of bioactives from brown algae requires intensive use of these enzymes. Nonetheless, there are few commercial alginate lyase preparations, and their costs make them unsuitable for large scale experiments. A recombinant expression protocol has been developed in this study for producing seven endo-lyases and three exo-lyases as soluble and highly active preparations. Saccharification of alginate using 21 different endo/exo-lyase combinations shows that there is complementary enzymatic activity between some of the endo/exo pairs. This is probably due to favorable matching of their substrate biases for the different glycosidic bonds in the alginate molecule. Therefore, selection of enzymes for the best saccharification results for a given biomass should be based on screens comprising both types of lyases. Additionally, different incubation temperatures, enzyme load ratios, and enzyme loading strategies were assessed using the best four enzyme combinations for treating Macrocystis pyrifera biomass. It was shown that $30^{\circ}C$ with a 1:3 endo/exo loading ratio was suitable for all four combinations. Moreover, simultaneous loading of endo-and exo-lyases at the beginning of the reaction allowed maximum alginate saccharification in half the time than when the exo-lyases were added sequentially.

Keywords

References

  1. Draget KI, Smidsrod O, Skjak-Braek G. 2005. Alginates from Algae, In: Biopolymers Online. WileyVCH Verlag GmbH & Co. KGaA. doi:10.1002/3527600035.bpol6008.
  2. Zhu B, Yin H. 2015. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6: 125-131. https://doi.org/10.1080/21655979.2015.1030543
  3. Remminghorst U, Rehm B. 2006.Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett. 28: 1701-1712. https://doi.org/10.1007/s10529-006-9156-x
  4. Sari-Chmayssem N, Taha S, Mawlawi H, Guegan JP, Jeftic J, Benvegnu T. 2016. Extracted and depolymerized alginates from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties. J. Appl. Phycol. 28: 1915-1929. https://doi.org/10.1007/s10811-015-0676-4
  5. Wong TY, Preston LA, Schiller NL. 2000. Alginate lyase: review of major sources and enzyme characteristics, structurefunction analysis, biological roles, and applications. Annu. Rev. Microbiol. 54: 289-340. https://doi.org/10.1146/annurev.micro.54.1.289
  6. Wang Y, Han F, Hu B, Li J, Yu W. 2006. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutrit. Res. 26: 597-603. https://doi.org/10.1016/j.nutres.2006.09.015
  7. Courtois J. 2009. Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr. Opin. Microbiol. 12: 261-273. https://doi.org/10.1016/j.mib.2009.04.007
  8. Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y, Kimura A, et al. 1993 Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase.J. Ferment. Bioeng. 75: 68-70. https://doi.org/10.1016/0922-338X(93)90181-7
  9. Hu X, Jiang X, Hwang H, Liu S, Guan H. 2004. Promotive effects of alginate-derived oligosaccharide on maize seed germination. J. Appl. Phycol. 16: 73-76. https://doi.org/10.1023/B:JAPH.0000019139.35046.0c
  10. Iwasaki KI, Matsubara Y. 2000. Purification of alginate oligosaccharides with root growth-promoting activity toward lettuce. Biosci. Biotechnol. Biochem. 64: 1067-1070. https://doi.org/10.1271/bbb.64.1067
  11. Kawada A,Hiura N, Tajima S, Takahara H. 1999.Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Arch. Dermatol. Res. 291: 542-547. https://doi.org/10.1007/s004030050451
  12. Yamamoto Y, Kurachi M, Yamaguchi K, Oda T. 2007. Stimulation of multiple cytokine production in mice by alginate oligosaccharides following intraperitoneal administration, Carbohydr. Res. 342: 1133-1137. https://doi.org/10.1016/j.carres.2007.02.015
  13. Iwamoto M, Kurachi M, Nakashima T, Kim D, Yamaguchi K, Oda T, et al. 2005. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264. 7 cells. FEBS Lett. 579: 4423-4429. https://doi.org/10.1016/j.febslet.2005.07.007
  14. Kurachi M, Nakashima T, Miyajima C, Iwamoto Y, Muramatsu T, Yamaguchi K, et al. 2005.Comparison of the activities of various alginates to induce $TNF-{\alpha}$ secretion in RAW264. 7 cells. J. Infect. Chemother. 11: 199-203. https://doi.org/10.1007/s10156-005-0392-0
  15. Khan S, Tondervik A, Sletta H, Klinkenberg G, Emanuel C, Onsoyen E, et al. 2012. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob. Agents Chemother. 56: 5134-5141. https://doi.org/10.1128/AAC.00525-12
  16. Powell LC, Sowedan A, Khan S, Wright CJ, Hawkins K, Onsoyen E, et al. 2013. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 29: 413-421. https://doi.org/10.1080/08927014.2013.777954
  17. Roberts JL, Khan S, E manuel C, Powell LC, Pritchard M, Onsoyen E, et al. 2013. An in vitro study of alginate oligomer therapies on oral biofilms. J. Dent. 41: 892-899. https://doi.org/10.1016/j.jdent.2013.07.011
  18. Yan G, Guo Y, Yuan J, Liu D, Zhang B. 2011. Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Poult. Sci. 90: 1441-1448. https://doi.org/10.3382/ps.2011-01364
  19. Alkawash MA, Soothill JS, Schiller NL. 2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. Apmi 114: 131-138. https://doi.org/10.1111/j.1600-0463.2006.apm_356.x
  20. Islan GA, Bosio VE , Castro GR. 2013. Alginate lyase and ciprofloxacin co-immobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromol. Biosci. 13: 1238-1248. https://doi.org/10.1002/mabi.201300134
  21. Hatch R, Schiller N. 1998. Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42: 974-977. https://doi.org/10.1128/AAC.42.4.974
  22. Camus C, Ballerino P, Delgado R, Olivera-Nappa A, Leyton C, Buschmann AH. 2016. Scaling up bioethanol production from the farmed brown macroalga Macrocystis pyrifera in Chile. Biofuel Bioprod. Biorefin 10: 673-685. https://doi.org/10.1002/bbb.1708
  23. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, et al. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239-243. https://doi.org/10.1038/nature12771
  24. Kim HT, Yun EJ, Kim DH, Park YC, Woo HC, Kim KH. 2014. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo-and exo-type alginate lyases. Bioprocess Biosyst. Eng. 37: 2105-2111. https://doi.org/10.1007/s00449-014-1188-3
  25. Ravanal MC, Pezoa-Conte R, von Schoultz S, Hemming J, Salazar O, Anugwom I, et al. 2016. Comparison of different types of pretreatment and enzymatic saccharification of Macrocystis pyrifera for the production of biofuel. Algal. Res. 13:141-147. https://doi.org/10.1016/j.algal.2015.11.023
  26. Ryu M, Lee EY. 2011. Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. J. Ind. Eng. Chem. 17: 853-858. https://doi.org/10.1016/j.jiec.2011.08.001
  27. Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M. 2016. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl. Microbiol. Biot. 100: 1723-1732. https://doi.org/10.1007/s00253-015-7035-x
  28. Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K. 2011. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energ. Environ. Sci. 4: 2575-2581. https://doi.org/10.1039/c1ee01236c
  29. Vanegas C, Hernon A, Bartlett J. 2015. Enzymatic and organic acid pretreatment of seaweed: effect on reducing sugars production and on biogas inhibition. Int. J. Ambient. Energy 36: 2-7. https://doi.org/10.1080/01430750.2013.820143
  30. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, et al. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308-313. https://doi.org/10.1126/science.1214547
  31. Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I. 2015. Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal. Res. 9: 126-132. https://doi.org/10.1016/j.algal.2015.03.008
  32. Hou X, Hansen JH, Bjerre AB. 2015. Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresour. Technol. 197: 310-317. https://doi.org/10.1016/j.biortech.2015.08.091
  33. Manns D, Andersen SK, Saake B, Meyer AS. 2016a. Brown seaweed processing: enzymatic saccharification of Laminaria digitata requires no pre-treatment. J. Appl. Phycol. 28: 1287-1294. https://doi.org/10.1007/s10811-015-0663-9
  34. Manns D, Nyffenegger C, Saake B,Meyer AS. 2016b. Impact of different alginate lyases on combined cellulase-lyase saccharification of brown seaweed. RSC Adv. 6: 45392-45401. https://doi.org/10.1039/C6RA06669K
  35. Sharma S, Horn SJ. 2016. Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour. Technol. 213: 155-161. https://doi.org/10.1016/j.biortech.2016.02.090
  36. Ravanal MC, Sharma S, Gimpel J, Reveco-Urzua F, Overland M, Horn SJ, et al. 2017. The role of alginate lyases in the enzymatic saccharification of brown macroalgae, Macrocystis pyrifera and Saccharina latissima. Algal. Res. 26: 287-293. https://doi.org/10.1016/j.algal.2017.08.012
  37. Deniaud-Bouet E, Kervarec N, Michel G, Tonon T, Kloareg B, Herve C. 2014. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. Ann. Bot. 114: 1203-1216. https://doi.org/10.1093/aob/mcu096
  38. Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, et al. 2015. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 51: 821-837. https://doi.org/10.1111/jpy.12326
  39. Lakmal HC, Lee JH, Jeon YJ. 2015. Enzyme-assisted extraction of a marine algal polysaccharide, fucoidan and bioactivities in Polysaccharides: Bioactivity and Biotechnology. (Ed Ramawat KG and Merillon J-M) 1065-1077.
  40. Leyton A, Pezoa-Conte R, Barriga A, Buschmann A, Maki-Arvela P, Mikkola JP, et al. 2016. Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal. Res. 16: 201-208. https://doi.org/10.1016/j.algal.2016.03.019
  41. Yamasaki M, Moriwaki S, Miyake O, Hashimoto W, Murata K, Mikami B. 2004. Structure and Function of a Hypothetical Pseudomonas aeruginosa Protein PA1167 Classified into Family PL-7 a novel alginate lyase with a $\beta$-sandwich fold. J. Biol. Chem. 279: 31863-31872. https://doi.org/10.1074/jbc.M402466200
  42. Badur AH, Jagtap SS, Yalamanchili G, Lee JK, Zhao H, Rao CV. 2015. Characterization of the alginate lyases from Vibrio splendidus 12B01. Appl. Environ. Microb. 03460-03414.
  43. Li JW, Dong S, Song J, Li CB, Chen XL, Xie BB, Zhang YZ. 2011. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar. Drugs 9: 109-123. https://doi.org/10.3390/md9010109
  44. Ma L, Chi Z, Li J, Wu L. 2008. Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J. Microbiol. Biotechnol. 24: 89-96. https://doi.org/10.1007/s11274-007-9443-2
  45. Miyake O, Ochiai A, Hashimoto W, Murata K. 2004. Origin and diversity of alginate lyases of families PL-5 and-7 in Sphingomonas sp. strain A1. J. Bacteriol. 186: 2891-2896. https://doi.org/10.1128/JB.186.9.2891-2896.2004
  46. Swift SM, Hudgens JW, Heselpoth RD, Bales PM, Nelson DC. 2014. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS One 9: e112939. https://doi.org/10.1371/journal.pone.0112939
  47. Yoon HJ, Hashimoto W, Miyake O, Okamoto M, Mikami B, Murata K. 2000. Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expres Purif. 19: 84-90. https://doi.org/10.1006/prep.2000.1226
  48. Hanahan D, Jessee J, Bloom F. 1991. Plasmid transformation of Escherichia coli and other bacteria. Method Enzymol. 204: 63-113.
  49. Petersen TN, Brunak S, von Heijne G, Nielsen H 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. https://doi.org/10.1038/nmeth.1701
  50. Rahman O, Cummings SP, Harrington DJ, Sutcliffe IC. 2008. Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria. World J. Microbiol. Biotechnol. 24: 2377-2382. https://doi.org/10.1007/s11274-008-9795-2
  51. Fu C, Wehr DR, Edwards J, HaugeB. 2008. Rapid one-step recombinational cloning. Nucleic Acids Res. 36:e54. https://doi.org/10.1093/nar/gkn167
  52. Norholm MH. 2010. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10:1-7. https://doi.org/10.1186/1472-6750-10-1
  53. Busso D, Stierlé M, Thierry JC, Moras D. 2008. A comparison of inoculation methods to simplify recombinant protein expression screening in Escherichia coli. Biotechniques 44: 101-106. https://doi.org/10.2144/000112632
  54. Studier FW. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Expres Purif. 41: 207-234. https://doi.org/10.1016/j.pep.2005.01.016
  55. Miller GL 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  56. Milner Y, Avigad G. 1967. A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr. Res. 4: 359-361. https://doi.org/10.1016/S0008-6215(00)80191-3
  57. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
  58. Dong S, Wei TD, Chen XL, Li CY, Wang P, Xie BB, et al. 2014. Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J. Biol. Chem. 289: 29558-29569. https://doi.org/10.1074/jbc.M114.584573
  59. Thomas F, Lundqvist LC, Jam M, Jeudy A, Barbeyron T, Sandstrom C, et al. 2013. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 288: 23021-23037. https://doi.org/10.1074/jbc.M113.467217
  60. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36 Suppl 2: W5-W9. https://doi.org/10.1093/nar/gkn201
  61. Jagtap SS, Hehemann JH, Polz MF, Lee JK, Zhao H.2014. Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations. Appl. Environ. Microb. 80: 4207-4214. https://doi.org/10.1128/AEM.01285-14
  62. Ochiai A, Hashimoto W, Murata K. 2006. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res. Microbiol. 157: 642-649. https://doi.org/10.1016/j.resmic.2006.02.006
  63. Nozach H, Fruchart-Gaillard C, Fenaille F, Beau F, Ramos OHP, Douzi B, et al. 2013. High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb. Cell Fact. 12: 1-16. https://doi.org/10.1186/1475-2859-12-1
  64. Vincentelli R, Cimino A, Geerlof A, Kubo A, Satou Y, Cambillau C, High-throughput protein expression screening and purification in Escherichia coli. Methods 55: 65-72.
  65. Novy R, Drott D, Yaeger K, Mierendrof R. 2001. Overcoming the codon bias of E. coli for enhanced protein expression. Innovations 12: 1-3.
  66. Pan SH, Malcolm BA. 2000. Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 29: 1234-1238. https://doi.org/10.2144/00296st03
  67. Studier FW. 1991. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219: 37-44. https://doi.org/10.1016/0022-2836(91)90855-Z
  68. Rosano G, Ceccarelli E. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 5: 172.

Cited by

  1. Metabolic Engineering for Improved Fermentation of L-Arabinose vol.29, pp.3, 2019, https://doi.org/10.4014/jmb.1812.12015
  2. Recent progress on engineering microbial alginate lyases towards their versatile role in biotechnological applications vol.65, pp.6, 2018, https://doi.org/10.1007/s12223-020-00802-8
  3. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides vol.13, pp.None, 2018, https://doi.org/10.1186/s13068-020-01738-4