DOI QR코드

DOI QR Code

Transcriptional Response and Enhanced Intestinal Adhesion Ability of Lactobacillus rhamnosus GG after Acid Stress

  • Bang, Miseon (Division of Animal Science, Chonnam National University) ;
  • Yong, Cheng-Chung (Division of Animal Science, Chonnam National University) ;
  • Ko, Hyeok-Jin (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Choi, In-Geol (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Oh, Sejong (Division of Animal Science, Chonnam National University)
  • Received : 2018.07.16
  • Accepted : 2018.08.30
  • Published : 2018.10.28

Abstract

Lactobacillus rhamnosus GG (LGG) is a probiotic commonly used in fermented dairy products. In this study, RNA-sequencing was performed to unravel the effects of acid stress on LGG. The transcriptomic data revealed that the exposure of LGG to acid at pH 4.5 (resembling the final pH of fermented dairy products) for 1 h or 24 h provoked a stringent-type transcriptomic response wherein stress response- and glycolysis-related genes were upregulated, whereas genes involved in gluconeogenesis, amino acid metabolism, and nucleotide metabolism were suppressed. Notably, the pilus-specific adhesion genes, spaC, and spaF were significantly upregulated upon exposure to acid-stress. The transcriptomic results were further confirmed via quantitative polymerase chain reaction analysis. Moreover, acid-stressed LGG demonstrated an enhanced mucin-binding ability in vitro, with 1 log more LGG cells (p < 0.05) bound to a mucin layer in a 96-well culture plate as compared to the control. The enhanced intestinal binding ability of acid-stressed LGG was confirmed in an animal study, wherein significantly more viable LGG cells (${\geq}2log\;CFU/g$) were observed in the ileum, caecum, and colon of acid-stressed LGG-treated mice as compared with a non-acid-stressed LGG-treated control group. To our knowledge, this is the first report showing that acid stress enhanced the intestine-binding ability of LGG through the induction of pili-related genes.

Keywords

References

  1. Bang M, Oh S, Lim KS, Kim Y, Oh S. 2014. The involvement of ATPase activity in the acid tolerance of Lactobacillus rhamnosus strain GG. Int. J. Dairy Technol. 67: 229-236. https://doi.org/10.1111/1471-0307.12123
  2. Lambert R, Stratford M. 1999. Weak-acid preservatives: modelling microbial inhibition and response. J. Appl. Microbiol. 86: 157-164. https://doi.org/10.1046/j.1365-2672.1999.00646.x
  3. Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R. 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol. 26: 700-711. https://doi.org/10.1016/j.fm.2009.07.007
  4. Choi SH, Baumler DJ, Kaspar CW. 2000. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol. 66: 3911-3916. https://doi.org/10.1128/AEM.66.9.3911-3916.2000
  5. Warnecke T, Gill RT. 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4: 25. https://doi.org/10.1186/1475-2859-4-25
  6. Duary RK, Batish VK, Grover S. 2010. Expression of the atpD gene in probiotic Lactobacillus plantarum strains under in vitro acidic conditions using RT-qPCR. Res. Microbiol. 161: 399-405. https://doi.org/10.1016/j.resmic.2010.03.012
  7. Kullen MJ, Klaenhammer TR. 1999. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol. Microbiol. 33: 1152-1161.
  8. Cotter PD, Hill C. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67: 429-453. https://doi.org/10.1128/MMBR.67.3.429-453.2003
  9. Broadbent JR, Larsen RL, Deibel V, Steele JL. 2010. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 192: 2445-2458. https://doi.org/10.1128/JB.01618-09
  10. Graham JW, Lei MG, Lee CY. 2013. Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. J. Bacteriol. 195: 4506-4516. https://doi.org/10.1128/JB.00758-13
  11. Varmanen P, Vogensen FK, Hammer K, Palva A, Ingmer H. 2003. ClpE from Lactococcus lactis promotes repression of CtsR-dependent gene expression. J. Bacteriol. 185: 5117-5124. https://doi.org/10.1128/JB.185.17.5117-5124.2003
  12. Suokko A, Poutanen M, Savijoki K, Kalkkinen N, Varmanen P. 2008. ClpL is essential for induction of thermotolerance and is potentially part of the HrcA regulon in Lactobacillus gasseri. Proteomics 8: 1029-1041. https://doi.org/10.1002/pmic.200700925
  13. Wall T, Båth K, Britton RA, Jonsson H, Versalovic J, Roos S. 2007. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol. 73: 3924-3935. https://doi.org/10.1128/AEM.01502-06
  14. Salminen S, Isolauri E, Salminen E. 1996. Probiotics and stabilisation of the gut mucosal barrier. Asia Pac. J. Clin. Nutr. 5: 53-56.
  15. Di Caro S, Tao H, Grillo A, Elia C, Gasbarrini G, Sepulveda A, et al. 2005. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Dig. Liver Dis. 37: 320-329. https://doi.org/10.1016/j.dld.2004.12.008
  16. Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, et al. 2011. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J. Gastroenterol. 17: 750-759. https://doi.org/10.3748/wjg.v17.i6.750
  17. Reunanen J, von Ossowski I, Hendrickx AP, Palva A, de Vos WM. 2012. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol. 78: 2337-2344. https://doi.org/10.1128/AEM.07047-11
  18. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198. https://doi.org/10.1073/pnas.0908876106
  19. Mandlik A, Swierczynski A, Das A, Ton-That H. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16: 33-40. https://doi.org/10.1016/j.tim.2007.10.010
  20. Proft T, Baker E. 2009. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell Mol. Life Sci. 66: 613-635. https://doi.org/10.1007/s00018-008-8477-4
  21. Tynkkynen S, Singh KV, Varmanen P. 1998. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 41: 195-204. https://doi.org/10.1016/S0168-1605(98)00051-8
  22. Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, et al. 2011. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress. Int. J. Food Microbiol. 147: 181-187. https://doi.org/10.1016/j.ijfoodmicro.2011.04.003
  23. Rallu F, Gruss A, Maguin E. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251. https://doi.org/10.1007/BF00395935
  24. Lim EM, Ehrlich SD, Maguin E. 2000. Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21: 2557-2561. https://doi.org/10.1002/1522-2683(20000701)21:12<2557::AID-ELPS2557>3.0.CO;2-B
  25. Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, et al. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteom. 75: 1357-1374. https://doi.org/10.1016/j.jprot.2011.11.009
  26. Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183. https://doi.org/10.1080/10408410600880643
  27. Wu C, Zhang J, Du G, Chen J. 2013. Aspartate protects Lactobacillus casei against acid stress. Appl. Microbiol. Biotechnol. 97: 4083-4093. https://doi.org/10.1007/s00253-012-4647-2
  28. Rintahaka J, Yu X, Kant R, Palva A, von Ossowski I. 2014. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis. PLoS One 9: e113922. https://doi.org/10.1371/journal.pone.0113922
  29. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, et al. 2010. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl. Environ. Microbiol. 76: 2049-2057. https://doi.org/10.1128/AEM.01958-09
  30. Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 108: 11217-11222. https://doi.org/10.1073/pnas.1105380108
  31. Doron S, Snydman DR, Gorbach SL. 2005. Lactobacillus GG: bacteriology and clinical applications. Gastroenterol. Clin. North Am. 34: 483-498. https://doi.org/10.1016/j.gtc.2005.05.011

Cited by

  1. Impact of spray‐drying on the pili of Lactobacillus rhamnosusGG vol.12, pp.5, 2018, https://doi.org/10.1111/1751-7915.13426
  2. Anti-inflammatory effects of Lactobacillus reuteri LM1071 via MAP kinase pathway in IL-1β-induced HT-29 cells vol.62, pp.6, 2018, https://doi.org/10.5187/jast.2020.62.6.864
  3. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey vol.11, pp.None, 2018, https://doi.org/10.3389/fcimb.2021.609722
  4. The Functional Properties of Lactobacillus casei HY2782 Are Affected by the Fermentation Time vol.11, pp.6, 2018, https://doi.org/10.3390/app11062481
  5. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013 vol.203, pp.6, 2018, https://doi.org/10.1007/s00203-021-02240-7
  6. Factors Relating to Adhesion and Aggregation of Lactobacillus paracasei and Lactobacillus rhamnosus Strains vol.90, pp.6, 2018, https://doi.org/10.1134/s0026261721060151