DOI QR코드

DOI QR Code

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator

사다리꼴 PZT/Ag Laminate 외팔보 발전기의 압전 에너지 하베스팅 특성

  • Na, Yong-Hyeon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Min-Seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University) ;
  • Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
  • 나용현 (한국세라믹기술원 전자소재부품센터) ;
  • 이민선 (한국세라믹기술원 전자소재부품센터) ;
  • 윤지선 (한국세라믹기술원 전자소재부품센터) ;
  • 홍연우 (한국세라믹기술원 전자소재부품센터) ;
  • 백종후 (한국세라믹기술원 전자소재부품센터) ;
  • 조정호 (한국세라믹기술원 전자소재부품센터) ;
  • 이정우 (부산대학교 재료공학과) ;
  • 정영훈 (한국세라믹기술원 전자소재부품센터)
  • Received : 2018.08.21
  • Accepted : 2018.09.13
  • Published : 2018.11.01

Abstract

The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.

Keywords

References

  1. S. Chalasani and J. M. Conrad, Proc. IEEE SoutheastCon 2008 (IEEE, Huntsville, USA, 2008) p. 442.
  2. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Mater. Struct., 17, 043001 (2008). [DOI: https://doi.org/10.1088/0964-1726/17/4/043001]
  3. N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, IEEE Trans. VLSI Syst., 17, 627 (2009). [DOI: https://doi.org/10.1109/TVLSI.2008.2006792]
  4. S. Li, J. Yuan, and H. Lipson, J. Appl. Phys., 109, 026104 (2011). [DOI: https://doi.org/10.1063/1.3525045]
  5. R. Kashyap, T. R. Lenka, and S. Baishya, IEEE Trans. Electron Devices, 63, 1281 (2016). [DOI: https://doi.org/10.1109/TED.2015.2514160]
  6. H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). [DOI: https://doi.org/10.1007/s12541-011-0151-3]
  7. S. B. Kim, H. Park, S. H. Kim, H. C. Wikle, J. H. Park, and D. J. Kim, J. Microelectromech. Syst., 22, 26 (2013). [DOI: https://doi.org/10.1109/JMEMS.2012.2213069]
  8. S. Du, Y. Jia, S. T. Chen, C. Zhao, B. Sun, E. Arroyo, and A. A. Seshia, Sens. Actuators, A, 263, 693 (2017). [DOI: https://doi.org/10.1016/j.sna.2017.06.026]
  9. C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, J. Intell. Mater. Syst. Struct., 20, 1923 (2009). [DOI: https://doi.org/10.1177/1045389X09341200]
  10. W. G. Ali and G. Nagib, Proc. 2012 International Conference on Engineering and Technology (ICET) (IEEE, Cairo, Egypt, 2012), p. 1.
  11. T. Galchev, E. E. Aktakka, and K. Najafi, J. Microelectromech. Syst., 21, 1311 (2012). [DOI: https://doi.org/10.1109/JMEMS.2012.2205901]
  12. L. Gu, Microelectron. J., 42, 277 (2011). [DOI: https://doi.org/10.1016/j.mejo.2010.10.007]
  13. R. Hosseini and M. Hamedi, J. Micromech. Microeng., 25, 125008 (2015). [DOI: https://doi.org/10.1088/0960-1317/25/12/125008]
  14. S.M.K. Tabatabaei, S. Behbahani, and P. Rajaeipour, Microsyst. Technol., 22, 2435 (2016). [DOI: https://doi.org/10.1007/s00542-015-2605-5]
  15. R. Hosseini, and M. Hamedi, Microsyst. Technol., 22, 1127 (2016). [DOI: https://doi.org/10.1007/s00542-015-2583-7]
  16. A. Shebeeb and H. Salleh, Proc. 2010 IEEE International Conference on Semiconductor Electronics (ICSE2010) (IEEE, Melaka, Malaysia, 2010), p. 275.
  17. A. Loui, F. T. Goericke, T. V. Ratto, J. Lee, B. R. Hart, and W. P. King, Sens. Actuators, A, 147, 516 (2008). [DOI: https://doi.org/10.1016/j.sna.2008.06.016]
  18. M. S. Lee, C. I. Kim, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 768 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.12.768]
  19. N. Kong, D. S. Ha, A. Erturk, and D. J. Inman, J. Intell. Mater. Syst. Struct., 21, 1293 (2010). [DOI: https://doi.org/10.1177/1045389X09357971]
  20. H. C. Song, C. Y. Kang, S. J. Yoon, and D. Y. Jeong, Met. Mater. Int., 18, 499 (2012). [DOI: https://doi.org/10.1007/s12540-012-3018-y]
  21. M. A. Karami, O. Bilgen, D. J. Inman, and M. I. Friswell, IEEE Trans. Ultrason. Eng., 58, 1508 (2011). [DOI: https://doi.org/10.1109/TUFFC.2011.1969]
  22. S. Roundy and P. K. Wright, Smart Mater. Struct., 13, 1131 (2004) [DOI: https://doi.org/10.1088/0964-1726/13/5/018]
  23. D. Zhu, A. Almusallam, S. P. Beeby, J. Tudor, and N. R. Harris, Proc. PowerMEMS 2010 (PowerMEMS, Belgium, 2010) p. 335.