DOI QR코드

DOI QR Code

Three-dimensional Refractive-index Distributions of Individual Angiosperm Pollen Grains

  • Park, Chansuk (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST)) ;
  • Lee, SangYun (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST)) ;
  • Kim, Geon (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST)) ;
  • Lee, SeungJun (Daedeok High School) ;
  • Lee, Jaehoon (Daedeok High School) ;
  • Heo, Taehyun (Daedeok High School) ;
  • Park, Yoonjeong (Daedeok High School) ;
  • Park, YongKeun (Department of Physics, Korea Advanced Institutes of Science and Technology (KAIST))
  • Received : 2018.07.10
  • Accepted : 2018.08.23
  • Published : 2018.10.25

Abstract

Three-dimensional (3D) refractive-index (RI) imaging and quantitative analyses of angiosperm pollen grains are presented. Using optical diffraction tomography, the 3D RI structures of individual angiosperm pollen grains were measured without using labeling or other preparation techniques. Various physical quantities including volume, surface area, exine volume, and sphericity were determined from the measured RI tomograms of pollen grains. Exine skeletons, the distinct internal structures of angiosperm pollen grains, were identified and systematically analyzed.

Keywords

References

  1. M. Fenner, Seeds: the ecology of regeneration in plant communities (Cabi, 2000).
  2. R. Lewin, "Fragile forests implied by pleistocene pollen: biologists who seek signs of the american tropical forests of the pleistocene usually find arid savannahs instead," Science 226, 36-37 (1984). https://doi.org/10.1126/science.226.4670.36
  3. T. M. Knight, J. A. Steets, J. C. Vamosi, S. J. Mazer, M. Burd, D. R. Campbell, M. R. Dudash, M. O. Johnston, R. J. Mitchell, and T. L. Ashman, "Pollen limitation of plant reproduction: Pattern and process," Annu. Rev. Ecol. Evol. Syst. 36, 467-497 (2005). https://doi.org/10.1146/annurev.ecolsys.36.102403.115320
  4. R. B. Knox, Pollen biotechnology for crop production and improvement (Cambridge University Press, 2005).
  5. N. Wikstrom, V. Savolainen, and M. W. Chase, "Evolution of the angiosperms: calibrating the family tree," Proc. Biol. Sci. 268, 2211-2220 (2001). https://doi.org/10.1098/rspb.2001.1782
  6. G. Liu, W. K. Cornwell, X. Pan, K. Cao, X. Ye, Z. Huang, M. Dong, and J. H. Cornelissen, "Understanding the ecosystem implications of the angiosperm rise to dominance: leaf litter decomposability among magnoliids and other basal angiosperms," J. Ecol. 102, 337-344 (2014). https://doi.org/10.1111/1365-2745.12192
  7. D. L. Dilcher, "Early angiosperm reproduction: an introductory report," Rev. Palaeobot. Palynology 27, 291-328 (1979). https://doi.org/10.1016/0034-6667(79)90015-0
  8. W. W. Payne, "Observations of harmomegathy in pollen of Anthophyta," Grana 12, 93-98 (1972). https://doi.org/10.1080/00173137209428832
  9. E. Katifori, S. Alben, E. Cerda, D. R. Nelson, and J. Dumais, "Foldable structures and the natural design of pollen grains," Proc. Natl. Acad. Sci. U. S. A. 107, 7635-7639 (2010). https://doi.org/10.1073/pnas.0911223107
  10. A. Matamoro-Vidal, C. Raquin, F. Brisset, H. Colas, B. Izac, B. Albert, and P.-H. Gouyon, "Links between morphology and function of the pollen wall: an experimental approach," Bot. J. Linnean Soc. 180, 478-490 (2016). https://doi.org/10.1111/boj.12378
  11. J. Heslop-Harrison, Y. Heslop-Harrison, M. Cresti, A. Tiezzi, and A. Moscatelli, "Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube," J. Cell Sci. 91, 49-60 (1988).
  12. H.-D. Behnke, "Transmission electron microscopy and systematics of flowering plants," in Flowering Plants (Springer, 1977), pp. 155-178.
  13. E. Schrank, Scanning electron and light microscopic investigations of angiosperm pollen from the Lower Cretaceous of Egypt, Pollen et Spores (1983).
  14. S. Wang, D. Wang, Q. Wu, K. Gao, Z. Wang, and Z. Wu, "3D imaging of a rice pollen grain using transmission X-ray microscopy," J. Synchrot. Radiat. 22, 1091-1095 (2015). https://doi.org/10.1107/S1600577515009716
  15. H. Lindner, S. A. Kessler, L. M. Müller, H. Shimosato-Asano, A. Boisson-Dernier, and U. Grossniklaus, "TURAN and EVAN mediate pollen tube reception in Arabidopsis synergids through protein glycosylation," PLoS. Biol. 13, e1002139 (2015). https://doi.org/10.1371/journal.pbio.1002139
  16. J. Atlagic, S. Terzic, and A. Marjanovic-Jeromela, "Staining and fluorescent microscopy methods for pollen viability determination in sunflower and other plant species," Ind. Crop. Prod. 35, 88-91 (2012). https://doi.org/10.1016/j.indcrop.2011.06.012
  17. M. Chica, "Authentication of bee pollen grains in brightfield microscopy by combining one-class classification techniques and image processing," Microsc. Res. Tech. 75, 1475-1485 (2012). https://doi.org/10.1002/jemt.22091
  18. A. Y. Cheung, Q.-h. Duan, S. S. Costa, B. H. de Graaf, V. S. Di Stilio, J. Feijo, and H.-M. Wu, "The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins," Mol. Plant. 1, 686-702 (2008). https://doi.org/10.1093/mp/ssn026
  19. R. Dixit and R. Cyr, "Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy," Plant J. 36, 280-290 (2003). https://doi.org/10.1046/j.1365-313X.2003.01868.x
  20. L. Song, R. P. M. v. Gijlswijk, I. T. Young, and H. J. Tanke, "Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy," Cytometry 27, 213-223 (1997). https://doi.org/10.1002/(SICI)1097-0320(19970301)27:3<213::AID-CYTO2>3.0.CO;2-F
  21. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, "Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications," Sensors 13, 4170-4191 (2013). https://doi.org/10.3390/s130404170
  22. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw Hill Professional, 2011).
  23. D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, "Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging," bioRxiv, 106328 (2017).
  24. E. Wolf, "Three-dimensional structure determination of semitransparent objects from holographic data," Opt. Commun. 1, 153-156 (1969). https://doi.org/10.1016/0030-4018(69)90052-2
  25. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, "Optical diffraction tomography techniques for the study of cell pathophysiology," J. Biomed. Photon. Eng. 2, 020201 (2016).
  26. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Optical diffraction tomography for high resolution live cell imaging," Opt. Express 17, 266-277 (2009). https://doi.org/10.1364/OE.17.000266
  27. J. Yoon, S.-A. Yang, K. Kim, and Y. Park, "Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation)," in Quantitative Phase Imaging II (International Society for Optics and Photonics, 2016), 97180L.
  28. S. A. Yang, J. Yoon, K. Kim, and Y. Park, "Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease," Cytom. Part A 91, 510-518 (2017). https://doi.org/10.1002/cyto.a.23110
  29. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, "White-light diffraction tomography of unlabelled live cells," Nat. Photon. 8, 256-263 (2014). https://doi.org/10.1038/nphoton.2013.350
  30. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, "High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography," J. Biomed. Opt. 19, 011005 (2014).
  31. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, "Profiling individual human red blood cells using commonpath diffraction optical tomography," Sci. Rep. 4, 6659 (2014).
  32. K. Kim, K. S. Kim, H. Park, J. C. Ye, and Y. Park, "Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography," Opt. Express 21, 32269-32278 (2013). https://doi.org/10.1364/OE.21.032269
  33. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Sci. Rep. 4, 5552 (2014).
  34. S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, and Y. Park, "Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells," in Quantitative Phase Imaging II (International Society for Optics and Photonics, 2016), 971814.
  35. Y. Kim, H. Shim, K. Kim, H. Park, J. H. Heo, J. Yoon, C. Choi, S. Jang, and Y. Park, "Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells," Opt. Express 22, 10398-10407 (2014). https://doi.org/10.1364/OE.22.010398
  36. K. Kim, J. Yoon, and Y. Park, "Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography," Optica 2, 343-346 (2015). https://doi.org/10.1364/OPTICA.2.000343
  37. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, "Marker-free phase nanoscopy," Nat. Photonics 7, 113 (2013). https://doi.org/10.1038/nphoton.2012.329
  38. T. I. Kim, B. Kwon, J. Yoon, I.-J. Park, G. S. Bang, Y. Park, Y.-S. Seo, and S.-Y. Choi, "Antibacterial Activities of Graphene Oxide-Molybdenum Disulfide Nanocomposite Films," ACS Appl. Mater. Interfaces 9, 7908-7917 (2017). https://doi.org/10.1021/acsami.6b12464
  39. M. Bennet, D. Gur, J. Yoon, Y. Park, and D. Faivre, "A Bacteria-Based Remotely Tunable Photonic Device," Adv. Opt. Mater. 5(2017).
  40. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, "Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers," Opt. Lett. 40, 1881-1884 (2015). https://doi.org/10.1364/OL.40.001881
  41. J. Jung, S.-J. Hong, H.-B. Kim, G. Kim, M. Lee, S. Shin, S. Lee, D.-J. Kim, C.-G. Lee, and Y. Park, "Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography," bioRxiv (2017).
  42. G. Kim, S. Lee, S. Shin, and Y. Park, "Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography," Sci Rep 8, 1782 (2018). https://doi.org/10.1038/s41598-018-20113-w
  43. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, "Time-multiplexed structured illumination using a DMD for optical diffraction tomography," Opt. Lett. 42, 999-1002 (2017). https://doi.org/10.1364/OL.42.000999
  44. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). https://doi.org/10.1364/JOSA.72.000156
  45. V. Lauer, "New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope," J. Microsc. 205, 165-176 (2002). https://doi.org/10.1046/j.0022-2720.2001.00980.x
  46. C. Park, S. Shin, and Y. Park, "Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths," arXiv preprint arXiv:1806.01067 (2018).
  47. W. M. Yunus and A. B. Rahman, "Refractive index of solutions at high concentrations," Appl. Opt. 27, 3341-3343 (1988). https://doi.org/10.1364/AO.27.003341
  48. M. Borg and D. Twell, "Pollen: structure and development," eLS (2011).
  49. S. Blackmore and S. H. Barnes, "Harmomegathic mechanisms in pollen grains," in Linnean Society symposium series, (Academic Press, 1986), pp. 137-149.
  50. R. P. Wodehouse, "Pollen grains: Their structure, identification and significance in science and medicine," J. Nerv. Ment. Dis. 86, 104 (1937). https://doi.org/10.1097/00005053-193707000-00047
  51. J. Brooks and G. Shaw, "Sporopollenin: a review of its chemistry, palaeochemistry and geochemistry," Grana 17, 91-97 (1978). https://doi.org/10.1080/00173137809428858
  52. J. J. Skvarla and J. W. Nowicke, "Ultrastructure of pollen exine in centrospermous families," Plant Syst. Evol. 126, 55-78 (1976). https://doi.org/10.1007/BF00986074
  53. C. A. Furness and P. J. Rudall, "Pollen aperture evolution-a crucial factor for eudicot success?," Trends Plant Sci. 9, 154-158 (2004). https://doi.org/10.1016/j.tplants.2004.01.001
  54. J. W. Walker, "Evolution of exine structure in the pollen of primitive angiosperms," Am. J. Bot. 61, 891-902 (1974). https://doi.org/10.1002/j.1537-2197.1974.tb12315.x
  55. K. von Besser, A. C. Frank, M. A. Johnson, and D. Preuss, "Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization," Development 133, 4761-4769 (2006). https://doi.org/10.1242/dev.02683
  56. S. Miyamura, T. Kuroiwa, and T. Nagata, "Disappearance of plastid and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy," Protoplasma 141, 149-159 (1987). https://doi.org/10.1007/BF01272897
  57. J. Jung, K. Kim, J. Yoon, and Y. Park, "Hyperspectral optical diffraction tomography," Opt. Express 24, 2006-2012 (2016). https://doi.org/10.1364/OE.24.002006
  58. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, "Jones phase microscopy of transparent and anisotropic samples," Opt. Lett. 33, 1270-1272 (2008). https://doi.org/10.1364/OL.33.001270
  59. S. Shin, D. Kim, K. Kim, and Y. Park, "Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device," arXiv preprint arXiv: 1801.00854 (2018).
  60. K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. Do Heo, and Y. Park, "Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging," Biomed. Opt. Express 8, 5688-5697 (2017). https://doi.org/10.1364/BOE.8.005688