DOI QR코드

DOI QR Code

The Three-wavelength PR3+:YLF Laser at 604 nm 607 nm and 640 nm with Fabry-Perot Etalon

  • Jin, Long (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Jin, Yu-Shi (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Dong, Yuan (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Li, Qing-Song (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Yu, Yong-Ji (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Li, Shu-Tao (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application) ;
  • Jin, Guang-Yong (Chang Chun University of Science and Technology, The Key Laboratory of Jilin Province Solid-State Laser Technology and Application)
  • Received : 2018.05.31
  • Accepted : 2018.08.10
  • Published : 2018.10.25

Abstract

A three-wavelength $Pr^{3+}:YLF$ laser at 604 nm, 607 nm and 640 nm simultaneously output by Fabry-Perot (F-P) etalon has been obtained. A 444 nm blue laser diode is used for pumping the $Pr^{3+}:YLF$ crystal, and a 0.1 mm F-P etalon is inserted in the resonator to select wavelength. The theoretical model of three-wavelength $Pr^{3+}:YLF$ laser is established, by adjusting the tilt angle of the etalon, the transmittances of the different wavelengths can be controlled, and the threshold values can be made to equalize by controlling the loss among different wavelengths. In the experiment, when the tilt angle of etalon is $9^{\circ}$ and the optimized length of resonator is 48 mm, the total output power of 25 mW at the three-wavelength is achieved at incident pump power of 7.5 W.

Keywords

References

  1. J. Liao, J.-L. He, H. Liu, H.-T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, "Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled $LiTaO_{3}$," Appl. Phys. Lett. 82, 3159 (2003). https://doi.org/10.1063/1.1570941
  2. J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, "High efficiency single- and dual-wavelength Nd : $GdVO_{4}$ lasers pumped by a fiber-coupled diode." Appl. Phys. B: Lasers Opt. 79, 301-304 (2004). https://doi.org/10.1007/s00340-004-1558-7
  3. S. Ruan, J. M. Sutherland, P. M. W. French, J. R. Taylor, and B. H. T. Chai, "Dual wavelength Pr:YLF laser," Chin. J. Lasers B4, 207-210 (1995).
  4. B. Xu, Z. Liu, H. Xu, Z. Cai, C. Zeng, Y. Yan, F. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorge, "Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607 nm," Opt. Commun. 305, 96-99 (2013). https://doi.org/10.1016/j.optcom.2013.05.002
  5. O. Benito, D. Jaque, Z. D. Luo, Y. D. Huang, and J. García Sole, "Solid state laser source for simultaneous generation of green and red radiation," J. Phys. D: Appl. Phys. 35, 2711-2715 (2002). https://doi.org/10.1088/0022-3727/35/21/304
  6. N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, "Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped $LiYF_{4}$, " Appl. Opt. 49, 3864-3868 (2010). https://doi.org/10.1364/AO.49.003864
  7. B. Xu, P. Camy, J.-L. Doualan, Z. Cai, and R. Moncorge, "Visible laser operation of $Pr^{3+}$-doped fluoride crystals pumped by a 469 nm blue laser," Opt. Express 19, 1191-1197 (2011). https://doi.org/10.1364/OE.19.001191
  8. Z. Liu, Z. Cai, S. Huang, C. Zeng, Z. Meng, Y. Bu, Z. Luo, B. Xu, H. Xu, C. Ye, F. Stareki, P. Camy, and R. Moncorge, "Diode-pumped $Pr^{3+}:LiYF_{4}$ continuous-wave deep red laser at 698 nm," J. Opt. Soc. Am. B 30, 302-305 (2013). https://doi.org/10.1364/JOSAB.30.000302
  9. X. X. Li, X. Yu, R. P. Yan, R. W. Fan, and D. Y. Chen, "Optical and laser properties of $Pr^{3+}:YLF$ crystal," Laser Phys. Lett. 8, 791-794 (2011). https://doi.org/10.1002/lapl.201110069
  10. Y. Cheng, B. Xu, B. Qu, S. Luo, H. Yang, Z. Cai, Z. Luo, H. Xu, P. Camy, J.-L. Doualan, and R. Moncorge, "Orthogonally polarized dual-wavelength diode-pumped $Pr^{3+}:LiYF_{4}$ lasers at 604 and 607 nm," OSA Technical Digest (online) (Optical Society of America, 2014), paper ATh2A.15.
  11. B. Xu, Y. Cheng, B. Qu, S. Luo, H. Xu, Z. Cai, P. Camy, J.-L. Doualan, and R. Moncorge, "InGaN-LD-pumped $Pr^{3+}:LiYF_{4}$ continuous-wave deep red lasers at 697.6 and 695.8 nm," Opt. Laser Technol. 67, 146-149 (2015). https://doi.org/10.1016/j.optlastec.2014.10.010
  12. K. I. Martin, W. A. Clarkson, and D. C. Hanna, "High-power single-frequency operation, at 1064 nm and 1061.4 nm of a Nd:YAG ring laser end-pumped by a beam-shaped diode bar," Opt. Commun. 136, 89-92 (1997).
  13. D. Xiao-Ming, D. Yu, Y. Bao-Quan, D. Tong-Yu, L. Ying-Yi, and J. Fu-Li, "A stable diffusion-bonded Tm:YLF bulk laser with high power output at a wavelength of 1889.5 nm," Chin. Phys. Lett. 31, 074203 (2014). https://doi.org/10.1088/0256-307X/31/7/074203
  14. J. L. Adam, W. A. Sibley, and D. R. Gabbe, "Optical absorption and emssion of $LiYF_{4}:Pr^{3+}$. J. Lumin. 33, 391-407 (1985). https://doi.org/10.1016/0022-2313(85)90109-7
  15. O. Svelto, Principle of lasers, Springer, fifth edition, 2010.
  16. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, "High-power red, orange, and green $Pr^{3+}:LiYF_{4}$ lasers." Opt. Lett. 39, 3193-3196 (2014). https://doi.org/10.1364/OL.39.003193